
Reasoning in tock-CSP with FDR

James Baxter, Pedro Ribeiro, and Ana Cavalcanti

Department of Computer Science, University of York, York, YO10 5GH, UK
{James.Baxter,Pedro.Ribeiro,Ana.Cavalcanti}@york.ac.uk

Abstract. Specifying budgets and deadlines using a process algebra like
CSP requires an explicit notion of time. The tock -CSP encoding embeds
a rich and flexible approach for modelling discrete timed behaviours with
powerful tool support. It uses an event tock , interpreted to mark passage
of time, and the model checker FDR. Analysis, however, has traditionally
used the standard semantics of CSP, which is inadequate for reasoning
about timed refinement. The most recent version of FDR provides tai-
lored support for tock -CSP, including specific operators, but the standard
semantics remains inadequate. In this paper, we characterise tock -CSP as
a language in its own right, rich enough to model budgets and deadlines,
and reason about Zeno behaviour. We present a tailored semantic model
for tock -CSP that captures timedwise refinement. To enable use of FDR4
to check refinement in this novel model, we use an encoding of refusals
via traces. Our results have been mechanised using Isabelle/HOL.

1 Introduction

In the realm of cyber-physical systems, time is a crucial concern. Such reactive
systems can be modelled as interacting with their environment via named events
that correspond to atomic and instantaneous interactions of interest over their
lifetime. This is the view adopted by process algebras such as CCS and CSP [1],
where the occurrence of events can be ordered. However, without a notion of
time it is impossible to specify timed properties, like budgets and deadlines, and
to reason about liveness and safety over time.

To encompass the notion of real time, several timed semantics have been pro-
posed for CSP [2,3,4,5,6]. Early works on continuous Timed CSP include those
of Reed and Roscoe [5], Davies [3] and Schneider [6]. The solid foundations of
CSP with algebraic, denotational, and operational semantics gave rise to prac-
tical refinement checking, namely via model-checking with FDR [7] and other
tools [8,9]. However, no such tool has, so far, emerged specifically for Timed CSP.

Instead, Roscoe has introduced tock -CSP, where the event tock is used to
mark the passage of discrete time. It enables, for example, the specification of
deadlines using timestops, that is, the refusal of tock , and the decomposition
of models into timed and untimed processes, thus facilitating abstraction and
modularity. Extensive use of tock -CSP has been reported, including, for example,
in the verification of security properties [10], the design of general-purpose I/O
controllers [11], the study of railways [12], the verification of distributed adaptive
systems [13], and more recently, in the verification of simulations for robotics [14].

The model-checker FDR4 has specialised facilities for tock -CSP. For example,
it provides a version of external choice (P @{tock}Q) where the processes P and
Q synchronise on tock until the first event that is not tock resolves the choice in
favour of P or Q . This captures the view where P and Q have a uniform notion
of time and that passage of time in itself does not resolve a choice.

FDR4 also offers a syntactic environment called a timed section1 that trans-
lates untimed processes into tock -CSP. Maximal progress, where time only ad-
vances after internal behaviour has stabilised, can be enforced by prioritising
internal actions τ , and X, that signals termination, over tock .

The analysis of tock -CSP processes, however, has typically been performed
using the standard traces, failures, and failures-divergences semantics of CSP.
This is also the case in FDR4. In that setting it is not possible to give a suitable
semantics to processes for reasoning about timed refinement, as illustrated below.

Example 1. R = (a −→ Skip @ b −→ Skip @ tock −→ R) u RUN ({tock})
S = (a −→ Skip @ tock −→ S) u RUN ({tock})

Process R makes an internal choice (u). It may offer events a, b and tock in an
external choice (@), where tock is followed by a recursion on R, and a and b
lead to termination (Skip), or offer tock indefinitely. RUN ({tock}) is a timed
deadlock, offering only the event tock indefinitely. Similarly, process S may also
offer tock indefinitely, or decide to offer a and tock in an external choice, where
a leads to termination, and tock to a recursion on S .

In the failures and failures-divergences models, R is refined by S , because,
even though S does not offer b, refusal of b is a possible behaviour of R. In a
timed setting, however, this should not be the case.

We consider the scenario where an experimenter decides to let time pass
before attempting to perform a. If b is observed to be refused at time zero,
and afterwards time advances by one unit, marked by tock , and the event a is
accepted, the experimenter can conclude that the experiment is with S , not R.
If R refuses b early on, it behaves as RUN ({tock}) and does not later accept a.
S presents a behaviour that is not possible for R, and so it should not be the
case that S refines R. However, the failures model is not rich enough to disallow
such a refinement as refusal sets, which capture the events being refused, are
only recorded at the end of a trace, that is, a sequence of interactions, including
tock , and not over time as required, that is, between tock events.

Schneider [6] suggested the use of the refusal testing model [15,16], where
refusals are recorded at the end of a trace, and also before each event. However,
while in that model R is not refined by S , it is possible to make distinctions within
a single time unit that are not necessarily desirable. In particular, distributivity
of internal choice through external choice, for example, even when tock is not a
possibility, does not hold in the refusal testing model as illustrated next.

Example 2. T = (a −→ Stop @ b −→ Stop) u c −→ Stop

U = (a −→ Stop u c −→ Stop) @ (b −→ Stop u c −→ Stop)

1 cs.ox.ac.uk/projects/fdr/manual/cspm/definitions.html#csp-timed-section

https://cs.ox.ac.uk/projects/fdr/manual/cspm/definitions.html#csp-timed-section

The refusal testing semantics of T records that a happens from a state where
c is refused, but not b. U , however, allows a to happen from a state where b
is refused, because the right-hand side of the external choice may be internally
resolved to offer c. The failures semantics of CSP, however, equates both T and
U . So, refusal testing is not compatible with the view of tock -CSP as a language
with a failures-divergences semantics within each time unit.

In this paper, we characterise tock -CSP as a language in its own right, with
operators whose behaviour is that defined when they are used in a timed section
of FDR with two crucial properties. First, events are instantaneous, so that
passage of time has to be explicitly defined. Second there is maximal progress
of internal events with respect to time. Our contribution is a definition of the
operators of tock -CSP and of a novel semantic model for tock -CSP that allows
the specification of deadlines, caters for termination, and where the refinement
relation is timewise refinement. The model and operators are fully specified in
Isabelle/HOL [17]. Thus another contribution is an environment for mechanical
theorem proving of laws that paves the ground for the development of symbolic
refinement tools for tock -CSP. Finally, we discuss how FDR4 can be used to
check for timed refinement via an extension of a technique in [18] to deal with
termination, thus providing a fully automated way for reasoning.

In Section 2 we introduce the tock -CSP language. The denotational model
is defined in Section 3, with the semantics of the operators given in Section 4.
In Section 5 we show how processes, and refinement, can be encoded in FDR4.
In Section 6 we compare our semantics with existing discrete-time models em-
ploying tock . Finally, we conclude in Section 7 by summarizing our contributions
and discussing pointers for future work.

2 tock-CSP

As mentioned earlier, tock -CSP is effectively CSP with the special event tock that
marks the passage of time. In CSP behaviours are specified by processes using
operators. In Section 2.1, we provide an overview of the operators of tock -CSP.
In Section 2.2, we show how deadlines and Zeno behaviour can be modelled.

2.1 Overview of tock-CSP operators

As we have explained, the operators of tock -CSP are those available in FDR
timed sections when events are defined not to take any time, with maximal
progress implicitly enforced for each operator. The operators are listed in Table 1.

The first operator, divergence (div), represents a process that is in an un-
stable state and performs no observable events. Due to maximal progress, time
can only advance when a process is in a stable state, so divergence prevents
time from passing. The second operator, termination (Skip), represents a pro-
cess that terminates immediately. A state in which termination is possible is not
stable. So, as with divergence, time does not pass before termination.

Table 1. The operators of tock -CSP

Operator Name

div Divergence
Skip Termination
Stop Timed Deadlock
StopU Deadlock
Waitn Delay
g N P Guarding
e −→ P Timed Event Prefixing
P uQ Internal Choice
P @ Q Time-synchronising External Choice
P ; Q Sequential Composition

P4Q Time-synchronising Interrupt

P4U Q Interrupt
P J X K Q Time-synchronising Parallel Composition

P \X Hiding
P [f] Renaming

The third operator, timed deadlock (Stop), waits in a stable state, refusing
all events except for tock . The untimed deadlock operator (StopU) refuses all
events and also timelocks, refusing tock . This is included since the ability to
refuse the passage of time is an important of feature of tock -CSP and can be used
to specify deadlines. Untimed versions of operators are marked by a subscript

U . Their encoding in a timed section is discussed in Section 4.
The next operator we include is the delay operator of timed CSP, Wait n.

This allows exactly n units of time to pass before terminating. As with Skip,
termination happens immediately after the first n time units. In particular, note
that this makes Wait 0 equivalent to Skip.

The guarding operator (g NP), takes a boolean g and a process P . It behaves
as P when g is true and as Stop when g is false. This allows events to be
conditionally offered, with events refused when the condition is false.

The timed prefixing operator (e −→ P) offers the event e, and then behaves
as P after e has occurred. It allows time to pass while waiting for e to occur, but
not between e and P , since we have instantaneous events. If e is the event tock ,
this operator allows a nondeterministic but nonzero number of units of time to
pass before P starts.

We illustrate the use of timed event prefixing with the example shown below.
It defines a process C , which represents a controller for a robot whose task is
moving, and which quickly comes to a halt if an obstacle is detected.

Example 3.

C = (move −→ Stop)4 (obs −→ ((halt −→ Skip) @ (Wait s ; StopU)))

The events move and halt represent commands to a robotic platform, to initiate
movement and brake; the event obs represents indication of an obstacle. Initially

C offers the possibility to perform move using the timed event prefixing operator
followed by a timed deadlock. At any point this behaviour may be interrupted
by the event obs, which we specify using the time-synchronising interrupt op-
erator (P 4 Q). This operator behaves as P , offering the events of Q while P
is executing, and behaving as Q when one of the events initially offered by Q
occurs. The passage of time is synchronised so that time passes in P only if it
passes in Q . The occurrence of an event in P does not resolve the interrupt,
allowing it to continue until P terminates or Q takes over.

As with deadlock, we also provide an untimed interrupt operator (P4U Q),
which allows the occurrence of tock in Q to interrupt P . Like StopU , this is
useful to model deadlines. An example is given in Section 2.2, where we use it
to define an interrupt that triggers after a specific number of time units.

Following obs in C , we have an external choice (P @ Q), which offers the
initial events of P and Q , behaving as the corresponding process after one of
its events has occurred. External choice synchronises passage of time between
P and Q , so that tock does not resolve the choice and time passes at the start
only if both P and Q allow. The external choice in C imposes a deadline for halt
by offering Wait s to allow time to pass for up to s time units, then behaving
as StopU to prevent further time from passing while waiting for halt to occur
(making halt urgent).

Wait s and StopU are composed in C using the sequential composition
operator (P ; Q), which initially behaves as P and then, when P terminates,
behaves as Q . There is no time synchronisation in sequential composition since
Q does not start until P finishes, so time passes in Q after time passes in P .

We also include the internal choice operator (P u Q), which can nondeter-
ministically behave as either P or Q . Control over time is delegated to P or
Q .

Parallel composition (P J X K Q) executes P and Q in parallel, synchronising
on both the events in X and tock . The events not in X are interleaved, occurring
independently in P and Q . The parallel composition terminates when both P
and Q have terminated. When one of the processes has terminated, time is still
allowed to pass in the other process until it is ready to terminate.

The hiding operator (P\X) hides the events in X , making them into internal
events. Due to maximal progress, the hidden events become urgent, since internal
events take priority over the passage of time. We allow the hiding of the event
tock , so that hiding, in this case, can be used to remove time from a process,
inserting an internal event wherever time could pass in P .

Finally, the renaming operator (P [f]) renames each of the events in P ac-
cording to the function f . We do not allow renaming to or from the event tock .
If tock could be renamed, then the implicit inclusion and synchronisation of tock
events, provided by the other operators, could be applied to other events, which
is not desired. Allowing renaming events to tock is also problematic, since it
would make it possible to violate maximal progress.

This concludes the overview of the operators of tock -CSP. In the following
section we focus on two aspects that show the expressivity of tock -CSP in defining
deadlines and capturing Zeno behaviour.

2.2 Deadlines and Zeno behaviour

As illustrated by the previous example, tock -CSP allows the specification of
deadlines using timestops, that is, Stop. For example, a common pattern in
timed specifications is to impose a deadline on a process P to terminate within
d time units, which can be abbreviated algebraicly (P I d) as follows.

Definition 1. P I d =̂ P 4 (Wait d ; Stop)

Here the time-synchronising interrupt (4) is used to ensure that P can only
engage in at most d number of tock events. A similar, but different construction
is used in Example 3 to impose a deadline on communicating an event, using
the time-synchronising external choice (@) instead.

In tock -CSP, we can also capture Zeno behaviour, where an infinite number of
events take place in a finite time. Like divergence and deadlock, this is typically
undesirable behaviour. It can, however, arise from modelling errors.

Example 4. Z = ((a −→ Skip) I 0) ; b −→ Z)

Z offers to perform the event a immediately, followed by b and then the recursion.

If we consider Z \ {b}, then the interaction with b becomes internal and urgent,
and therefore an infinite sequence of a events is possible in zero time.

Just like the ability of CSP to capture divergence and deadlock is a pos-
itive feature essential to allow reasoning about (absence of) these undesirable
behaviours, the ability of tock -CSP to express Zeno behaviour is also positive.

Next, we describe the semantic model X-tock , giving the healthiness condi-
tions that processes are required to fulfil. In Section 4, we present the formal
semantics of the operators described informally in this section.

3 Semantic model and healthiness conditions

In this section we present a new denotational model for tock -CSP, which we call
X-tock . We define it and describe its healthiness conditions. Afterwards, in Sec-
tion 4, we present the semantics of the operators of tock -CSP. The mechanisation
of the model and operators can be found in [19].

We define the semantics of X-tock in terms of a given set Σ of events specific
to the model being defined. To Σ we add two events that have a special role in
the model: X, which signals termination of a process, and tock , which signals
the passage of time. We refer to Σ with these special events added as ΣX

tock .

ΣX
tock == Σ ∪ {X, tock}

Table 2. The healthiness conditions of X-tock

Name Definition

TT0(P) P 6= ∅

TT1(P) ρ . σ ∧ σ ∈ P ⇒ ρ ∈ P

TT2(P) ρa 〈ref X 〉a σ ∈ P ∧
Y ∩ {e : ΣX

tock | (e 6= tock ∧ ρa 〈evt e〉 ∈ P) ∨

(e = tock ∧ ρa 〈ref X , evt tock〉 ∈ P)

} = ∅
⇒ ρa 〈ref (X ∪Y)〉a σ ∈ P

TT3(P) ρa 〈ref X , evt tock〉a σ ∈ P ⇒ tock 6∈X

TT4(P) ρa 〈ref X 〉a σ ∈ P ⇒ ρa 〈ref (X ∪ {X})〉a σ ∈ P

The semantics of each X-tock process is a set of sequences of observations, repre-
sented by the type Obs below. These observations may be either the occurrence
of an event in ΣX

tock or of a refusal of some subset of ΣX
tock .

Obs ::= evt〈〈ΣX
tock 〉〉 | ref 〈〈PΣX

tock 〉〉

We place constraints on the structure of the sequences of observations that form
the semantics of a X-tock process, defining traces of the TickTockTrace type
below. Constraint (1) is that a X may only occur at the end of a trace, since X
signals termination. Constraint (2) states that any refusal set that occurs before
the end of a trace must be followed by a tock . We thus ensure that refusals can
only occur at the end of a trace and before a tock . Finally, constraint (3) states
that every tock event must be preceded by a refusal. This is due to the fact that
we take the presence of a refusal to indicate stability, and requiring stability
before tock is part of how we ensure maximal progress.

TickTockTrace == {t : seq Obs | ∀ i : dom t •
(i < # t ⇒ t i 6= evt X) ∧ (1)

(i < # t ∧ t i ∈ ran ref ⇒ t (i + 1) = evt tock) ∧ (2)

(t i = evt tock ⇒ i > 1 ∧ t (i − 1) ∈ ran ref) (3)

}

We do not impose any requirement for a refusal to occur at the end of a trace,
allowing us to represent instability after a particular sequence of events.

Each X-tock process is represented by a subset of TickTockTrace. However,
not all such sets characterise a valid process. We define five healthiness conditions
that X-tock processes satisfy, shown in Table 2. The first, TT0, states that each
process, P , must have at least one trace, even if it is just the empty trace.

The second healthiness condition, TT1, is defined in terms of a prefix and
subset relation, ., defined as shown below. We have that t1 . t2 if t1 is obtained

from a prefix of t2 by possibly replacing some refusals with a subset. The health-
iness condition TT1 thus imposes prefix and subset closure, which is that, given
any trace ρ of a healthy process, any prefix of ρ where the refusals are replaced
with subsets is also a trace of that process. This corresponds to the prefix and
subset closure healthiness condition of the stable failures semantics for CSP, but
accounts for the fact that refusals occur before tock events. A consequence of
TT1 is that the there must be a prefix of the trace of events before a tock that
ends with a refusal, indicating stability.

. : P(seq Obs × seq Obs)

∀ s, t : seq Obs; e : ΣX
tock ; X ,Y : FΣX

tock •
〈〉 . t ∧
(s . t ⇒ 〈evt e〉a s . 〈evt e〉a t) ∧
(s . t ∧ X ⊆ Y ⇒ 〈ref X 〉a s . 〈ref Y 〉a t)

The offer of a tock event is thus incompatible with instability, as required by
maximal progress.

The remaining three healthiness conditions constrain the contents of refusal
sets in the traces. The third, TT2, states that any event that cannot be performed
after a particular trace must be included in a refusal set of a similar trace. This is
specified by stating that a set Y disjoint from the set of events that can occur can
be added to the refusal set to yield another trace of the process. This is similar
to the healthiness condition of the stable failures model that says events that
cannot be performed must be refused but, as with TT1, TT2 handles the fact
that refusals occur before tock throughout the trace. TT2 applies only where a
refusal already occurs in a trace of a process, so it does not require the inclusion
of a refusal where instability occurs.

The fourth healthiness condition, TT3, requires that a refusal before a tock
event does not include tock , since tock cannot be both refused and performed.
This does not prevent tock from being refused just before it can be performed,
as in a −→ Skip u tock −→ Skip. This process has a trace 〈ref {a}, evt tock〉,
where tock is performed after observing a refusal of a, but it also contains a
trace 〈ref {tock}〉, where tock is refused. This process is nondeterministic but
healthy, and TT3 requires that 〈ref {tock}, evt tock〉 is not one of its traces.

The final healthiness condition, TT4, states that anywhere a refusal occurs,
the X event must also be refused. This follows from the fact that termination
occurs unstably, and so no refusal can be observed if X is not refused. However,
as with TT3, TT4 does not exclude nondeterministic processes such as Skip u
a−→Skip. This process can terminate immediately, having a trace 〈evt X〉, but
it also has a trace 〈ref {X}〉 indicating a stable state where X is refused.

Similarly to other semantic models, refinement in X-tock is subset inclusion.
A process Q refines P exactly when every trace of Q is also a trace of P .

P v Q =̂ Q ⊆ P

Next, we give the semantics of the operators of X-tock , which satisfy the health-
iness conditions described here, as proved in our mechanisation [19].

4 Operator semantics

We define the semantics of a process P using a function tttraces[[P]], which gives
the set of traces corresponding to P . In each of the sections below, we give the
semantics of an operator of X-tock described in Section 2.1.

Divergence The simplest X-tock operator is div, which represents a divergent
process and has the semantics shown below. Such a process is unstable and
produces no observable behaviour, so the only trace of div is the empty trace.
The empty trace is a trace of every process, as a consequence of TT1.

tttraces[[div]] = {〈〉}

div cannot allow the passage of time, since it is never in a stable state, as
indicated by the lack of a refusal in any of its traces.

Termination The process Skip, which terminates immediately, has the seman-
tics shown below. Similarly to div, it contains no refusals, since termination is
unstable due to the fact that it happens immediately without permitting the
passage of time. In addition to the empty trace, Skip also has a trace containing
the observation of a X event, signalling termination.

tttraces[[Skip]] = {〈〉, 〈evt X〉}

Timed Deadlock We define Stop using a function tocks, defined by the predicate
below, which takes a set X and outputs sequences of tock events with refusals
drawn from the subsets of X . We define tocks X recursively as including the
empty trace and including any traces in tocks X prepended with a refusal (which
is a subset of, or equal to, X) and a tock event. In addition to being used here,
the tocks function is used in the definitions of several other operators of X-tock .

∀X : PΣX
tock •

〈〉 ∈ tocks X ∧
(∀ t : tocks X ; Y : PΣX

tock | Y ⊆ X • 〈ref Y , evt tock〉a t ∈ tocks X)

The semantics of Stop, show below, is then defined to include both the traces
from tocks themselves and traces from tocks with an extra refusal appended.

tttraces[[Stop]] = tocks ΣX ∪ {t : tocks ΣX; X : PΣX • t a 〈ref X 〉}

The refusals used in this definition are taken from the subsets of ΣX
tock excluding

the tock event, so that everything except tock is refused. For brevity in defini-
tions, we use ΣX as an abbreviation for ΣX

tock \ {tock}.

Deadlock We also provide StopU , a version of deadlock that refuses all events,
including tock , which has the semantics shown below. It only contains the empty
trace and traces containing a single refusal, which is a subset of ΣX

tock .

tttraces[[StopU]] = {〈〉} ∪ {X : PΣX
tock • 〈ref X 〉}

There are no other traces since StopU does not allow any events to occur.

Delay We define the semantics of Wait n as a union of three sets as shown below.
The first set, (4), contains all the traces of less than or equal to n tock events,
specified using tocks and with refusals drawn from ΣX. We specify restrictions
on the number of tock events by filtering them into a sequence containing only
tock events using the filter operator, �, and restricting its length.

tttraces[[Wait n]] =

{t : tocks ΣX | #(t � {evt tock}) ≤ n} (4)

∪ {t : tocks ΣX; X : PΣX | #(t � {evt tock}) < n • t a 〈ref X 〉} (5)

∪ {t : tocks ΣX | #(t � {evt tock}) = n • t a 〈evt X〉} (6)

The second set, (5), contains traces of less than n tock events with a refusal
appended, drawn from ΣX, since we have stability before each tock . The final
set, (6), contains traces of exactly n tock events followed by a X, since Wait n
terminates after n time units have elapsed. As for Skip, we do not have a refusal
after n tock events because termination is immediate.

Example 5. Assuming Σ = {a, b, c}, we sketch below the set of traces of Wait 2.

tttraces[[Wait 2]] = {
〈〉, 〈ref {a, b, c,X}, evt tock〉, 〈ref {a, b, c}, evt tock〉, . . . (7)
〈ref {a, b, c,X}, evt tock , ref {a, b, c,X}, evt tock〉, . . . (8)

〈ref {a, b, c,X}〉, 〈ref {a, b, c,X}, evt tock , ref {a, b, c,X}〉, . . . (9)

〈ref {a, b, c,X}, evt tock , ref {a, b, c,X}, evt tock , evt X〉, . . . (10)
}

The traces of Wait 2 on lines (7) and (8) are those traces of tocks ΣX that contain
2 or fewer tock events, contributed by set (4). Recall that, due to the healthiness
condition TT1, each trace containing a refusal has a trace where that refusal is
replaced with a subset. This can be seen on line (7), where ref {a, b, c,X} in one
trace is replaced with its subset ref {a, b, c}. In general, in examples, we only
show the traces containing the maximal refusals, omitting the subsets.

The traces on line (9) are contributed by set (5), which contains the traces
from set (4) with fewer than 2 tock events with a refusal appended to them that
is a subset of ΣX. The traces on lines (7), (7) and (9) represent the stability
before each tock event, in which everything but tock is refused.

Finally, the trace shown on line (10) is contributed by set (6), which contains
the traces from set (4) that contain exactly 2 tock events (i.e. the trace shown
on line (9)) with a X event appended. Note that there is no trace with a refusal
after 2 tock events, since the traces with 2 tock events are excluded from set (5),
ensuring that stability cannot be observed before X.

Timed Event Prefixing We define the semantics of the timed event prefixing
operator, e −→P , as the union of four sets, as shown below. The first two, (11)

and (12), are similar to those used to define the semantics of Stop, but refusals
in these sets do not include the event e offered by the prefixing.

tttraces[[e −→ P]] =

tocks (ΣX \ {e}) (11)

∪ {t : tocks (ΣX \ {e}); X : P(ΣX \ {e}) • t a 〈ref X 〉} (12)

∪ {t : tocks (ΣX \ {e}); s : tttraces[[P]] | e 6= tock • t a 〈evt e〉a s}
(13)

∪ {t : tocks ΣX; X : PΣX; s : tttraces[[P]] | e = tock •
t a 〈ref X , evt tock〉a s} (14)

The last two sets used to define the semantics of e −→P , (13) and (14), contain
traces consisting of tock events followed by an occurrence of e, which is then
followed by the observations of the traces of P . The first of these, (13), represents
the case when e is an event other than tock and can simply be placed on its own
between a trace from tocks and a trace from the semantics of P . The second,
(14), represents the case where e is tock and inserts a refusal set before the
occurrence of the event. Note that when the e is tock , at least one tock event
must occur, so it included in the trace separately to the events from tocks.

Example 6. Assuming again Σ = {a, b, c}, the traces of a −→ Stop are below.

tttraces[[a −→ Stop]] = {
〈〉, 〈ref {b, c,X}, evt tock〉, . . . (15)
〈ref {b, c,X}, evt tock , ref {b, c,X}, evt tock〉, . . . (16)

〈ref {b, c,X}〉, 〈ref {b, c,X}, evt tock , ref {b, c,X}〉, . . . (17)
〈ref {b, c,X}, evt tock , ref {b, c,X}, evt tock , ref {b, c,X}〉, . . . (18)

〈evt a〉, 〈ref {b, c,X}, evt tock , evt a〉, . . . (19)
〈evt a, ref {a, b, c,X}〉, 〈evt a, ref {a, b, c,X}, evt tock〉, . . . (20)

}

The traces on lines (15) and (16) are contributed by set (11). It consists of
traces of tock events, with refusal of every event, except a and tock . Similarly,
the traces on lines (17) and (18) are contributed by set (12). They are the traces
on lines (15) and (16) with a refusal of every event except a and tock appended.
The third set (13) contributes the traces on lines (19) and (20). These consist of
traces of tock events followed by an occurrence of a, as can be seen on line (19),
where the traces from line (15) are followed by the event a. After the occurrence
of a, the traces of Stop are appended, as shown on line (20). Set (14) does not
contribute any traces in this case, since a 6= tock .

Internal Choice The semantics of internal choice, P uQ , is simply the union of
the semantics of P and Q , allowing the behaviour of either to be chosen.

tttraces[[P uQ]] = tttraces[[P]] ∪ tttraces[[Q]]

External Choice The semantics of external choice, P @ Q , is shown below. It is

defined in terms of a set that collects traces rap and raq from the semantics of P
and Q , constrained by several conditions. The common prefix r from tocks ΣX

tock

captures the synchronising behaviour of external choice by requiring the tock
events at the start to be the same. The prefix r is required to be the longest

such prefix of r a p and r a q by conditions (22) and (23), since all the tock
events at the start must be synchronised.

tttraces[[P @ Q]] = {r : tocks ΣX
tock ; p, q , t : TickTockTrace |

r a p ∈ tttraces[[P]] ∧ r a q ∈ tttraces[[Q]] ∧ (21)

(∀ r2 : tocks ΣX
tock • r2 prefix r a p ⇒ r2 prefix r) ∧ (22)

(∀ r2 : tocks ΣX
tock • r2 prefix r a q ⇒ r2 prefix r) ∧ (23)

(∀X : PΣX
tock • p = 〈ref X 〉 ⇒

∃Y : PΣX
tock • q = 〈ref Y 〉 ∧ X \ {tock} = Y \ {tock}) ∧ (24)

(∀X : PΣX
tock • q = 〈ref X 〉 ⇒

∃Y : PΣX
tock • p = 〈ref Y 〉 ∧ X \ {tock} = Y \ {tock}) ∧ (25)

(t = r a p ∨ t = r a q) • t}

The refusals that occur after the initial tock events are intersected for events
other than tock , since we offer the non-tock events of both P and Q . This is
specified by conditions (24) and (25). They require that if p or q is a trace
containing a single refusal then both must be such a trace, since lack of a refusal
in P or Q indicates instability and so makes the external choice unstable at
that point. The refusals X and Y in p and q must contain the same non-tock
events. A refusal of tock can be included even if it is not matched by a refusal of
tock in the other trace, since the tock -synchronising behaviour means that tock
is refused unless both processes offer it. Traces other than single refusals must
either be empty or start with a non-tock event, since tock events at the start of p
and q are ruled out by conditions (22) and (23). These traces are not constrained
since the occurrence of a non-tock event resolves the choice. We recall that tock
is absent from refusals before tock events (by TT3), so this handling of tock in

refusals does not need to be applied to r . The matching traces r a p and r a q
are both included in the semantics of P @ Q .

Example 7. In the example below, we use again Σ = {a, b, c}.

tttraces[[a −→ Stop @ b −→ c −→ Stop]] = {
〈〉, 〈ref {c,X}, evt tock〉, 〈ref {c,X}, evt tock , ref {c,X}, evt tock〉, . . .

(26)

〈ref {c,X}〉, 〈ref {c,X}, evt tock , ref {c,X}〉, . . . (27)
〈evt a〉, 〈ref {c,X}, evt tock , evt a〉, 〈evt a, ref {a, b, c,X}〉, . . . (28)
〈evt b〉, 〈ref {c,X}, evt tock , evt b〉, 〈evt b, ref {a, b,X}〉, . . . (29)

}

The traces on line (26) are those traces of initial tock events common to both
a −→ Stop and b −→ c −→ Stop. Those are all the traces of tock events with

refusals not including a, b and tock , effectively intersecting the refusals in the
tock traces from both sides. The conditions (22) and (23) ensure that the refusals
before all initial tock events are intersected.

For those traces of one of the processes in the choice that have a refusal after
an initial trace of tock events, the conditions (24) and (25) ensure that they are
matched by a corresponding trace of tock events from the other process, also
ending in a refusal. In our example, both sides are event prefixes and so both
have traces of tock events ending in refusals. These refusals are intersected, with
the exception of tock events, yielding the traces on line (27).

Any traces beyond the initial sequence of tock events and a single refusal are
included without restriction. In the case of our example, this means that traces
from a −→ Stop are included as shown on line (28). Similarly, the traces on
line (29) are contributed by b −→ c −→ Stop.

Sequential Composition The semantics of sequential composition, P ; Q , is de-
fined as the union of two sets, as shown below. The first set includes all the
traces in the semantics of P , except those that end with the event X. These
traces represent the behaviour of P before termination.

tttraces[[P ; Q]] =

{t : tttraces[[P]] | ¬ (∃ s : TickTockTrace • t = s a 〈evt X〉)}
∪
{s, t : TickTockTrace |

s a 〈evt X〉 ∈ tttraces[[P]] ∧ t ∈ tttraces[[Q]] • s a t}

The second set is formed from the traces of P ending in X, with the traces of Q
appended to them. The X event is removed, since it cannot occur in the middle
of a trace. The traces in the second set represent the behaviour of the sequential
composition after P has terminated.

Time-synchronising Interrupt For time-synchronising interrupt, P4Q , we need
a function to extract the tock events from a trace, since the tock events through-
out P are synchronised with those at the start of Q . This is provided for by
the function filterTocks, defined by the predicate below, which extracts the tock
events and the refusals before them from a trace. It is defined recursively. For the
empty trace, filterTocks results in the empty trace. When filterTocks is applied
to a single refusal, we also get the empty trace, since such a refusal does not
have a tock event attached to it. When applied to a trace that starts with an
event other than tock , the result is that of applying filterTocks to the rest of
the trace. When applied to a trace beginning with a refusal followed by a tock
event, the refusal and tock event are retained, and are followed by the result of

applying filterTocks to the rest of the trace.

∀X : PΣX
tock ; e : ΣX; t : TickTockTrace •

filterTocks 〈〉 = 〈〉 ∧
filterTocks 〈ref X 〉 = 〈〉 ∧
filterTocks (〈evt e〉a t) = filterTocks t ∧
filterTocks (〈ref X , evt tock〉a t) = 〈ref X , evt tock〉a filterTocks t

The semantics of time-synchronising interrupt are then defined, using filterTocks,
as the union of three sets, as shown below. The first set, (30), contains the traces

p a 〈evt X〉 from P that end in X. It is required that there is a trace q in the
semantics of Q that is the result of applying filterTocks to p, since all tock
events in P must be synchronised with ones in Q . Provided such a trace from Q

exists, pa〈evt X〉 is included without any modification, since time-synchronising
interrupt cannot prevent P from terminating if it is ready to do so.

The second set, (31), contains the traces from P that end in a refusal X .
As with the first set, there must be a corresponding trace in Q containing its
tock events. In addition, the trace from Q is required to end in a refusal Y .
The refusals Z at the end of the resulting traces are taken from subsets of the
union of X and Y , which are required to be the same for all events except tock ,
since an event is only refused if it is refused by P and Q . This is similar to
the requirement for an external choice, since the interrupt offers Q in choice
throughout P . As with external choice, tock is refused if it is in X or Y , since
tock can only happen when both P and Q can do it.

tttraces[[P 4Q]] =

{p : TickTockTrace; q : tttraces[[Q]] |
p a 〈evt X〉 ∈ tttraces[[P]] ∧ filterTocks p = q • p a 〈evt X〉} (30)

∪ {p, q : TickTockTrace; X ,Y ,Z : PΣX
tock |

p a 〈ref X 〉 ∈ tttraces[[P]] ∧ q a 〈ref Y 〉 ∈ tttraces[[Q]] ∧
filterTocks p = q ∧ Z ⊆ X ∪Y ∧ X \ {tock} = Y \ {tock} •
p a 〈ref Z 〉} (31)

∪ {p : tttraces[[P]]; q1, q2 : TickTockTrace |
(¬ ∃ r : seq Obs • p = r a 〈evt X〉) ∧
(¬ ∃ r : seq Obs; X : PΣX

tock • p = r a 〈ref X 〉) ∧
filterTocks p = q1 ∧ q1a q2 ∈ tttraces[[Q]] ∧
(¬ ∃ r : seq Obs; X : PΣX

tock • q2 = 〈ref X 〉a r) • p a q2} (32)

Finally, the third set, (32), handles the traces p of P that end in neither X
nor a refusal. These traces need to be matched by traces from Q of the form

q1 a q2, where q1 is the trace of tock events corresponding to p. The trace q2
thus represents the behaviour of Q after the initial sequence of tock events in
q1. It is required that q2 does not start with a refusal, since refusals at the end

of a trace are already handled by the second set and refusals before a tock must
be synchronised (and hence should occur in q1). The traces in the third set are
then made up of the concatenation of p and q2, representing the behaviour of
P before interruption followed by the behaviour of Q after interruption. Note
that, since q2 can be the empty trace, this set can include traces just from P ,
provided there is a corresponding q1 trace to synchronise with.

Example 8.

tttraces[[a −→ Stop4 b −→ c −→ Stop]] = {
〈ref {c,X}〉, 〈ref {c,X}, evt tock , ref {c,X}〉, . . . (33)

〈evt a, ref {a, c,X}〉, . . . (34)

〈〉, 〈ref {c,X}, evt tock〉, 〈evt a〉, 〈ref {c,X}, evt tock , evt a〉, . . . (35)

〈evt a, ref {a, c,X}, evt tock〉, . . . (36)

〈evt b〉, 〈evt b, ref {a, b,X}〉, 〈evt b, ref {a, b,X}, evt tock〉, . . . (37)

〈evt a, evt b〉, 〈evt a, evt b, ref {a, b,X}〉, . . . (38)

〈evt a, ref {a, c,X}, evt tock , evt b〉, . . . (39)

}

For a −→ Stop4 b −→ c −→ Stop, there are no traces contributed by the first
set, (30), since a −→ Stop does not have any traces ending with a X event.

The second set, (31), contributes the traces shown on lines (33) and (34).
These are the traces of a −→ Stop that end with a refusal and have a corre-
sponding trace of tock events ending with a refusal in b −→ c −→ Stop. The
refusals before the tock events must be the same as those before the tock events
from a −→Stop, effectively intersecting the refusal sets before tock events. The
refusals at the ends of the traces from each side are required to be the same in
all but tock event, and we take all the subsets of the union of these end refusals.
In the case of our example tock is not refused by either side, and both sides
contain all subsets (since they both satisfy TT1), so the result is effectively the
intersection of these subsets. The trace 〈ref {c,X}〉, for example, is present in
the semantics of both a −→ Stop and b −→ c −→ Stop, so it is included on
line (33). The empty trace occurs before the refusal on both sides, since the
empty trace results from applying filterTocks to the empty trace.

On line (34) a refusal is included after the occurrence of a. This also comes
from the set (31), since it ends with a refusal and is included in the traces of the
process a−→Stop. The event a is refused after the occurrence of a, but the event
b is not refused at that point, since b−→c−→Stop can still interrupt after a has
occurred. The initial trace of tock events preceding the refusal in b−→c−→Stop
is obtained by filtering the tock events from the trace from a−→Stop. The trace
〈evt a, ref {a, c,X}〉 thus comes from the trace 〈ref {a, c,X}〉 of b−→c−→Stop,
where an empty trace of tock events precedes the refusal.

The traces contributed by the third set, (32), are those on lines (35), to (39).
Those on lines (35) and (36) are from a −→ Stop and do not end in a X or

a refusal. As with the traces ending in a refusal (from set (31)), their tock
events and corresponding refusals must be matched by a trace of tock events
from b −→ c −→ Stop. The filtering of tock events means this applies equally
to tock events before a (line (35)) and after a (line (34)). The result is that b is
removed from each refusal observed before a tock , since it is offered throughout
a −→ Stop, as the initial event of b −→ c −→ Stop.

The traces shown on lines (37), (38) and (39) consist of traces from a−→Stop
that do not end in X or a refusal, followed by traces from b −→ c−→Stop that
do not start with a refusal. The traces from a −→ Stop are matched by traces
of tock events from b −→ c −→ Stop as before, but the traces after the b event
are included as-is. In particular, this means that traces ending a refusal, such as
〈evt b, ref {a, b,X}〉, are included by set (32) since the refusals come after b.

Interrupt For the untimed version of interrupt, P 4U Q , we do not need to
match the tock events in P with those in Q . However, we do need to ensure
that the refusals recorded before tock events in P are consistent with the initial
events offered by Q , since an event can be refused only if it is refused by P and
Q .

We thus define a function, intersectRefusalTrace, to intersect each of the
refusals in a trace with a given refusal. This function is defined by the predicate
shown below. As with filterTocks, intersectRefusalTrace is defined recursively. It
takes as its first argument a refusal X . When its second argument is the empty
trace, the result is also the empty trace. When the second argument begins with
an event e, the result is that of applying intersectRefusalTrace to the rest of
the trace, with e prepended. Finally, when the second argument begins with a
refusal Y , the result is that of applying intersectRefusalTrace to the rest of the
trace, with the intersection of X and Y prepended.

∀ e : ΣX
tock ; X ,Y : PΣX

tock ; s : seq Obs •
intersectRefusalTrace X 〈〉 = 〈〉 ∧
intersectRefusalTrace X (〈evt e〉a s) =

〈evt e〉a intersectRefusalTrace X s ∧
intersectRefusalTrace X (〈ref Y 〉a s) =

〈ref (X ∩Y)〉a intersectRefusalTrace X s

We also define a boolean function containsRefusal , which takes a trace as its only
argument and determines whether that trace contains a refusal. This function
is used to determine when the intersection of refusals needs to be applied. We
omit its definition here as it is relatively simple.

The semantics of interrupt is then as shown below. It is defined as the union
of five sets, each accounting for a different form of trace in the semantics of P .

tttraces[[P 4U Q]] =

{p : TickTockTrace; X : PΣX
tock |

p a 〈evt X〉 ∈ tttraces[[P]] ∧ containsRefusal p ∧

〈ref X 〉 ∈ tttraces[[Q]] •
intersectRefusalTrace X (p a 〈evt X〉)} (40)

∪ {p : TickTockTrace |
p a 〈evt X〉 ∈ tttraces[[P]] ∧ ¬ containsRefusal p •
p a 〈evt X〉} (41)

∪ {p, q : TickTockTrace; X ,Y : PΣX
tock |

p a 〈ref X 〉 ∈ tttraces[[P]] ∧ 〈ref Y 〉a q ∈ tttraces[[Q]] •
intersectRefusalTrace Y (p a 〈ref X 〉)a q} (42)

∪ {p : tttraces[[P]]; q : tttraces[[Q]]; X : PΣX
tock |

(¬ ∃ r : TickTockTrace • p = r a 〈evt X〉) ∧
(¬ ∃ r : TickTockTrace; Y : PΣX

tock • p = r a 〈ref Y 〉) ∧
containsRefusal p ∧ 〈ref X 〉 ∈ tttraces[[Q]] ∧
(¬ ∃ r : TickTockTrace; Y : PΣX

tock • q = 〈ref Y 〉a r) •
intersectRefusalTrace X p a q} (43)

∪ {p : tttraces[[P]]; q : tttraces[[Q]] |
(¬ ∃ r : TickTockTrace • p = r a 〈evt X〉) ∧
¬ containsRefusal p ∧
(¬ ∃ r : TickTockTrace; Y : PΣX

tock • q = 〈ref Y 〉a r) •
p a q} (44)

The first set, (40), includes traces from P that end with X and contain a refusal.
For these traces to be included, there must be a refusal X in Q . This is due to
the fact that a refusal indicates stability and, since the initial events of Q are
offered at each point in P , there must be stability at the start of Q for stability
to be observed. The refusals from P are intersected with X .

The second set, (41), includes the traces from P that end with X and do not
contain a refusal. These traces do not require a corresponding refusal in Q and
are included as-is without intersection of refusals.

The third set, (42), handles traces in P that end with a refusal. For such
traces there must be a corresponding trace in Q that starts with a refusal, which
we append to the traces from P , intersecting their refusals. The corresponding
refusal in P is required when appending such traces, since tock may only happen
from a stable state, so instability in P prevents a tock in Q from interrupting.
As in the first set, the refusal from the trace in Q is intersected with all refusals
throughout the trace from P , using the function intersectRefusalTrace. The rest
of the trace in Q is then appended to the intersected trace from P .

The fourth set, (43), handles the traces p in P that end with neither a X nor
a refusal, but do contain a refusal somewhere. For such traces, we require that
there is a trace from Q that just contains a single refusal X , which is intersected
with the refusals in p, as in the first set. This indicates that Q is stable, and so
the refusals of p can be kept. In the set, we include the result of appending a

trace q from Q to the intersected p. This trace q must not start with a refusal,
as appending such traces from Q is already handled by the third set.

Finally, the fifth set, (44), handles the traces p in P that do not end in X
and do not contain a refusal. Such traces do not require a corresponding refusal
in Q because no stability has been observed in P . As with set (43), we allow for
a trace q from Q that does not start with a refusal to be appended to p.

Example 9.

tttraces[[a −→ Stop4U b −→ c −→ Stop]] = {
〈ref {c,X}〉, 〈ref {c,X}, evt tock , ref {c,X}〉, 〈evt a, ref {a, c,X}〉, . . .

(45)

〈evt a, ref {a, c,X}, evt tock〉, . . . (46)

〈ref {c,X}, evt tock , ref {a, c,X}〉, . . . (47)

〈ref {c,X}, evt tock〉, 〈ref {c,X}, evt tock , evt a〉, . . . (48)

〈evt a, ref {a, c,X}, evt tock〉, . . . (49)

〈evt a, ref {a, c,X}, evt tock , evt b〉, . . . (50)

〈〉, 〈evt a〉, (51)

〈evt b〉, 〈evt b, ref {a, b,X}〉, 〈evt b, ref {a, b,X}, evt tock〉, . . . (52)

〈evt a, evt b〉, 〈evt a, evt b, ref {a, b,X}〉, . . . (53)

}

For a−→Stop4U b−→c−→Stop, as with a−→Stop4b−→c−→Stop, there
are no traces in a −→ Stop that end with a X event, so the first two sets, (40)
and (41), do not contribute any traces. The third set, (42), contributes the traces
shown on lines (45), (46) and (47). These consist of the combination of traces
from a −→ Stop that end with a refusal and traces from b −→ c −→ Stop that
start with a refusal. The refusal at the start of the trace from b −→ c −→ Stop
is intersected with all refusals in the trace from a −→ Stop. Since 〈ref {a, cX}〉
is a trace of b −→ c −→Stop, the traces of a −→Stop that end in a refusal are
included, with b and tock excluded from all refusals. This yields the traces shown
on line (45), which are the same as those shown on line (33) for Example 8.

The trace shown on line (46) derives from the traces 〈evt a, ref {a, b, c,X}〉
and 〈ref {a, c,X}, evt tock〉. It is the same as the trace shown on line (36) for
Example 8, but is included for a different reason, since the tock event comes
from b −→ c −→ Stop rather than a −→ Stop. Indeed, the same trace is also
included again in the semantics of a −→ Stop4U b −→ c −→ Stop (line (49)),
for a different reason, as we explain below.

However, the trace shown on line (47) is not included in the semantics of
a −→ Stop4 b −→ c −→ Stop, but is unique to the untimed version. It fol-
lows from combining the trace 〈ref {b, c,X}〉 from a −→ Stop with the trace
〈ref {a, c,X}, evt tock , ref {a, c,X}〉 from b−→c−→Stop. As we discuss below,
a−→Stop4U b−→c−→Stop also has a trace 〈ref {c,X}, evt tock , evt a〉 (shown

on line (48)). This means the process can both perform and refuse a at the same
point, making it nondeterministic. This is due to the fact that both processes
accept tock , and a tock from b −→ c −→ Stop can interrupt a −→ Stop, so oc-
currence of a tock can be from either process. Since tock events are synchronised
in time-synchronising interrupt, it does not show this behaviour.

The traces on lines (48), (49) and (50) are contributed by set (43). These
traces consist of combinations of traces from a −→ Stop that contain a refusal,
but do not end in a refusal or a X, and traces from b−→ c−→Stop that do not
start with a refusal. These require stability at the start of b −→ c −→ Stop,
which is recorded in 〈ref {a, c,X}〉. The refusals in each of the traces from
a −→ Stop are intersected with this refusal, meaning that b and tock are ex-
cluded. Taking the empty trace as the trace from b −→ c −→ Stop yields the
traces on lines (48) and (49). One of these, shown on line (49), is a trace shown
previously on line (46). Here, tock comes from a −→ Stop, whereas previously
it came from b −→ c −→ Stop.

Traces from b −→ c −→ Stop beginning with b can be appended instead of
the empty trace, since they are the only other traces in b−→ c−→Stop that do
not start with a refusal. This yields the trace on line (50), where b can happen
after the trace from line (49). As with the trace from line (46) this trace is also
included by set (42), with b following the tock event in b −→ c −→ Stop.

The traces on lines (51), (52) and (53) come from set (44). These are similar
to those from set (43), but using traces from a −→ Stop that do not include
refusals. The traces on line (51) are formed by appending the empty trace from
the process b−→c−→Stop to these traces, and are, in fact, the only such traces
from a −→ Stop that do not include refusals.

By appending traces from b −→ c −→ Stop that start with an occurrence
of b to the empty trace from a −→ Stop, we obtain the traces on line (52).
These represent the traces where a b event interrupts at the start of the process.
Similarly, the traces on line (53), consist of appending traces from b−→c−→Stop
that start with an occurrence of b to the trace 〈evt a〉. These represent a b event
interrupting after the occurrence of an a event.

Parallel Composition The semantics of parallel composition, P JAKQ , is defined
as shown below, by merging each pair of traces from the semantics of P and Q
using a trace merge function p J A KT q . The trace merge function describes the
set of traces of the parallel composition generated by each pair of traces and the
semantics of parallel composition is given by the union of the results. Having
the output of the function be a set allows for different interleavings of events to
be enumerated and for subset closure to be ensured.

tttraces[[P J A K Q]] =
⋃
{p : tttraces[[P]]; q : tttraces[[Q]] • p J A KT q}

The predicate describing the trace merge function is shown in Figure 1. This
function is defined recursively, considering each possible case for a well-formed
trace: the empty trace, a trace with a single refusal, a trace with a single X
event, a trace starting with an event in Σ, and a trace starting with a refusal

∀A : PΣ; X ,Y : PΣX
tock ; e, f : Σ; t , s : TickTockTrace •

〈〉 J A KT 〈〉 = {〈〉} ∧ (54)

〈〉 J A KT 〈ref X 〉 = {〈〉} ∧ (55)

〈〉 J A KT 〈evt X〉 = {〈〉} ∧ (56)

(e 6∈A⇒ 〈〉 J A KT (〈evt e〉a t) = {s : 〈〉 J A KT t • 〈evt e〉a s}) ∧ (57)

(e ∈ A⇒ 〈〉 J A KT (〈evt e〉a t) = {〈〉}) ∧ (58)

〈〉 J A KT (〈ref X , evt tock〉a t) = {〈〉} ∧ (59)

〈ref X 〉 J A KT 〈ref Y 〉 =

{Z : PΣX
tock | Z ⊆ X ∪Y ∧

X \ (A ∪ {X, tock}) = Y \ (A ∪ {X, tock}) • 〈ref Z 〉} ∧ (60)

〈ref X 〉 J A KT 〈evt X〉 = 〈ref X 〉 J A KT 〈ref Σ〉 ∧ (61)

(e 6∈A⇒ 〈ref X 〉 J A KT (〈evt e〉a t) =

{s : TickTockTrace | s ∈ 〈ref X 〉 J A KT t • 〈evt e〉a s}) ∧ (62)

(e ∈ A⇒ 〈ref X 〉 J A KT (〈evt e〉a t) = {〈〉}) ∧ (63)

〈ref X 〉 J A KT (〈ref Y , evt tock〉a t) = {〈〉} ∧ (64)

〈evt X〉 J A KT 〈evt X〉 = {〈evt X〉} ∧ (65)

(e 6∈A⇒ 〈evt X〉 J A KT (〈evt e〉a t) =

{s : TickTockTrace | s ∈ 〈evt X〉 J A KT t • 〈evt e〉a s}) ∧ (66)

(e ∈ A⇒ 〈evt X〉 J A KT (〈evt e〉a t) = {〈〉}) ∧ (67)

〈evt X〉 J A KT (〈ref Y , evt tock〉a t) =

{Z : PΣX
tock ; s : TickTockTrace | 〈ref Z 〉 ∈ 〈ref Σ〉 J A KT 〈ref Y 〉 ∧

s ∈ 〈evt X〉 J A KT t • 〈ref Z , evt tock〉a s} ∧ (68)

(e 6∈A ∧ f 6∈A⇒ (〈evt e〉a t) J A KT (〈evt f 〉a s) =

{r : TickTockTrace | r ∈ t J A KT (〈evt f 〉a s) • 〈evt e〉a r}
∪ {r : TickTockTrace | r ∈ (〈evt e〉a t) J A KT s • 〈evt f 〉a r}) ∧ (69)

(e 6∈A ∧ f ∈ A⇒ (〈evt e〉a t) J A KT (〈evt f 〉a s) =

{r : TickTockTrace | r ∈ t J A KT (〈evt f 〉a s) • 〈evt e〉a r}) ∧ (70)

(e ∈ A ∧ f ∈ A ∧ e = f ⇒ (〈evt e〉a t) J A KT (〈evt f 〉a s) =

{r : TickTockTrace | r ∈ t J A KT s • 〈evt e〉a r}) ∧ (71)

(e ∈ A ∧ f ∈ A ∧ e 6= f ⇒ (〈evt e〉a t) J A KT (〈evt f 〉a s) = {〈〉}) ∧ (72)

(e 6∈A⇒ (〈evt e〉a t) J A KT (〈ref Y , evt tock〉a s) =

{r : TickTockTrace | r ∈ t J A KT (〈ref Y , evt tock〉a s) •
〈evt e〉a r}) ∧ (73)

(e ∈ A⇒ (〈evt e〉a t) J A KT (〈ref Y , evt tock〉a s) = {〈〉}) ∧ (74)

(〈ref X , evt tock〉a t) J A KT (〈ref Y , evt tock〉a s) =

{Z : PΣX
tock ; r : TickTockTrace |

〈ref Z 〉 ∈ 〈ref X 〉 J A KT 〈ref Y 〉 ∧ r ∈ t J A KT s •
〈ref Z , evt tock〉a r} ∧ (75)

s J A KT t = t J A KT s (76)

Fig. 1. Definition of the parallel trace merge function

followed by a tock event. The trace merge function is defined to be commutative,
so we only consider one ordering of each of the possible cases. In addition to the
traces on each side, the trace merge function also takes a synchronisation set A,
so that it can be determined which events require synchronisation.

Equations (54) to (59) define the cases in which one trace is empty. If both
traces are empty (equation (54)), then the result is a set of traces containing
only the empty trace, since there are no further observations to be merged from
either of the traces. Similarly, when the empty trace is merged with a single
refusal (equation (55)) the empty trace is also the only resulting trace, since the
empty trace gives no guarantee of stability to allow the inclusion of a refusal.

If a trace starts with X, an event in the synchronisation set A, or a tock
event (with its preceding refusal), then its initial event requires synchronisation.
Since the empty trace cannot provide that synchronisation, the set containing the
empty trace is also the result when it is merged with such traces (equations (56),
(58) and (59)). When a trace starts with an event e that is not in A (i.e. that
does not require synchronisation), then merging it with the empty trace yields
all the traces formed by preprending e to the traces resulting from merging the
empty trace with the rest of the trace (equation (57)). This ensures that events
that do not require synchronisation can keep being performed until an event
that requires synchronisation or the empty trace is encountered.

Example 10. When the empty trace is merged with the traces of b−→c−→Stop
using the synchronisation set {c}, the results are as shown below.

〈〉 J {c} KT 〈〉 = {〈〉} (77)

〈〉 J {c} KT 〈evt b〉 = {〈evt b〉} (78)

〈〉 J {c} KT 〈ref {a, c,X}〉 = {〈〉} (79)

〈〉 J {c} KT 〈ref {a, c,X}, evt tock〉 = {〈〉} (80)

〈〉 J {c} KT 〈ref {a, c,X}, evt tock , evt b〉 = {〈〉} (81)

〈〉 J {c} KT 〈evt b, ref {a, b,X}〉 = {〈evt b〉} (82)

〈〉 J {c} KT 〈evt b, ref {a, b,X}, evt tock〉 = {〈evt b〉} (83)

〈〉 J {c} KT 〈evt b, evt c〉 = {〈evt b〉} (84)

The case with two empty traces (equation (77)) is a straightforward application
of equation (54). In equation (78), the b event does not require synchronisation
and so is included before the empty trace that comes from merging the rest of
the trace (which is empty). Refusals and tock events merged with the empty
trace result in the empty trace, since they are not matched, by corresponding
observations, as defined in equations (79) and (80). Events after tock events are
also removed by this, as specified equation (81). When the trace from the right-
hand-side begins with a b event, as in equations (82), (83) and (84), the result
is prepending b to the result of merging the rest of the trace. The rest of the
trace is empty, since there is still nothing to match a refusal or tock event, and
c requires synchronisation (since it is in the synchronisation set {c}).

Equations (60) to (64) define the cases where a trace has a single refusal (and
the other is not empty). When both traces are refusals (equation (60)), 〈ref X 〉
and 〈ref Y 〉, the resulting set contains singleton traces containing refusals drawn
from subsets of the union of X and Y . The refusal sets X and Y are required
to be the same, except in X, tock and the events from A. This is because these
events do not require synchronisation, and are refused only if they are refused
in both traces.

When a singleton trace 〈ref X 〉 is merged with a singleton trace containing
just the X event (equation (61)), the result is the same as that of merging ref X
with a refusal of Σ. This is due to the fact that the presence of a refusal implies
that X is refused (by TT4). Therefore, the parallelism cannot terminate, but the
process that is ready to terminate refuses every other event, with the exception
of tock , since it does not block the passage of time.

When the other trace begins with a non-X non-tock event (equations (62)
and (63)), the result is similar to the corresponding case for the empty trace
(equations (57) and (58)). Similarly, merging a refusal with a tock event (equa-
tion (64)) results in the set containing the empty trace, since tock also requires
synchronisation. We could include a refusal formed by merging the refusal on its
own with the refusal before the tock event, but that is already handled by prefix
closure (equation (60)).

Example 11. Merging the traces 〈ref {b, c,X}〉 and 〈ref {c,X}〉 from the pro-
cess a −→ Stop with traces from b −→ c −→ Stop, again taking {c} as the
synchronisation set, yields the traces shown below.

〈ref {b, c,X}〉 J {c} KT 〈〉 = {〈〉} (85)

〈ref {b, c,X}〉 J {c} KT 〈evt b〉 = {〈evt b〉} (86)

〈ref {b, c,X}〉 J {c} KT 〈ref {a, c,X}〉 = {} (87)

〈ref {c,X}〉 J {c} KT 〈ref {c,X}〉 =
{〈ref {c,X}〉,

〈ref {c}〉, . . .} (88)

〈ref {b, c,X}〉 J {c} KT 〈ref {a, c,X}, evt tock〉 = {〈〉} (89)

〈ref {b, c,X}〉 J {c} KT

〈ref {a, c,X}, evt tock , evt b〉 = {〈〉} (90)

〈ref {b, c,X}〉 J {c} KT 〈evt b, ref {a, b,X}〉 = {} (91)

〈ref {b, c,X}〉 J {c} KT 〈evt b, ref {b,X}〉 =
{〈evt b, ref {b, c,X}〉,
〈evt b, ref {b, c}〉, . . .}

(92)

〈ref {b, c,X}〉 J {c} KT

〈evt b, ref {a, c,X}, evt tock〉 = {〈evt b〉} (93)

Merging a refusal with an empty trace (equation (85)) yields just the empty
trace, as in equation (79). When the refusal is merged with an event not requiring
synchronisation, as in equation (86), the event is included at the start and the
rest of the trace is empty, since the refusal has no corresponding refusal.

When both sides are traces with a single refusal, the refusals must agree
in events not requiring synchronisation. Thus, in equation (87), there are no

resulting traces, since the refusals {b, c,X} and {a, c,X} do not agree in the
events a and b. However, the subset refusal {c,X} is present in both a −→
Stop and b −→ c −→ Stop, and the result is all the subsets of it, as shown in
equation (88).

Merging a refusal with a trace starting with a tock event yields only the
empty trace, as in equations (89) and (90).

When a refusal is merged with a trace consisting of b followed by a refusal,
the event b is included first and the refusals are then merged as in equations (87)
and (88). Thus, in equation (91), there are no traces, since {b, c,X} and {a, b,X}
do not agree in the non-synchronised event a. The subset refusals {b, c,X} and
{b,X} do agree and so the result, in equation (92) is all the traces with an
occurrence of b followed by a refusal that is a subset of {b, c,X}. Note that the
refusals do not have to agree in the event c, since it requires synchronisation.
The union of the refusals from each trace is taken, so that c is included in the
output refusals. A tock event after b does not match the refusal, so the result in
that case is just the trace containing b, as shown in equation (93).

Equations (65) to (68) are the remaining cases for traces containing a sin-
gle X event. This X event requires synchronisation, since processes in parallel
composition must terminate together. Thus, in the case where both sides have a
trace containing a single X event (equation (65)), the result is the set containing
a trace with a single X event.

When the trace with a X event is merged with a trace starting with non-X
non-tock event e (equations (66) and (67)), the X event cannot occur because it
does not have an event to synchronise with, but the result depends on whether
e requires synchronisation.

When a X event is merged with a trace starting with a tock event, with its
refusal Y , there is no X event to synchronise with, but we allow time to pass
while waiting for termination, so the X event behaves similarly to a tock event
in parallel composition. The result is thus that of prepending a refusal Z and a
tock event to the traces formed by merging the X event with the trace after the
input tock event. The refusal Z is drawn from the refusals formed by merging
Σ with Y . The tock event thus follows on from the trace ending with a refusal
that results from equation (61).

Equations (69) to (74) define the cases where a trace begins with a non-X
non-tock event e. The first four of these cover the cases where the other trace also
begins with a non-X non-tock event f . If neither e nor f require synchronisation
(equation (69)), then the result is the union of the traces where the event e
occurs and those where the event f occurs. The traces where the event e occurs
are formed by prepending an occurrence of the event e to the result of merging
the remainder of the trace with the other trace. The traces where f occurs are
produced by the dual of this process. If e does not require synchronisation but
f does (equation (70)), then the result is just the traces where e occurs, since f
has nothing to synchronise with in this case.

When both e and f require synchronisation, then we must consider whether
or not they are the same event. If they are the same event (equation (71)),

then they can synchronise with one another. The result in this case is that of
prepending the event to the traces formed by merging the traces after e and f . If
e and f are not equal (equation (72)), then the empty trace is the only possible
trace, since they cannot synchronise with each other.

When the trace starting with e is merged with a trace starting with a tock
event (and its associated refusal), then the tock event requires synchronisation,
which e cannot provide. The result then depends on whether e requires synchro-
nisation. If e does not require synchronisation (equation (73)), then the result
is similar to that of merging it with an event f requiring synchronisation (equa-
tion (70)). If e requires synchronisation (equation (74)), then both sides require
synchronisation so the only result is the empty trace.

Example 12. Merging the trace 〈evt a〉 from a −→ Stop with the traces from
b −→ c −→ Stop yields the traces shown below.

〈evt a〉 J {c} KT 〈〉 = {〈evt a〉} (94)

〈evt a〉 J {c} KT 〈evt b〉 =
{〈evt a, evt b〉,
〈evt b, evt a〉} (95)

〈evt a〉 J {c} KT 〈ref {a, c,X}〉 = {〈evt a〉} (96)

〈evt a〉 J {c} KT 〈ref {a, c,X}, evt tock〉 = {〈evt a〉} (97)

〈evt a〉 J {c} KT 〈ref {a, c,X}, evt tock , evt b〉 = {〈evt a〉} (98)

〈evt a〉 J {c} KT 〈evt b, ref {a, c,X}〉 =
{〈evt a, evt b〉,

〈evt b, evt a〉} (99)

〈evt a〉 J {c} KT 〈evt b, ref {a, c,X}, evt tock〉 =
{〈evt a, evt b〉,

〈evt b, evt a〉} (100)

〈evt a〉 J {c} KT 〈evt b, evt c〉 =
{〈evt a, evt b〉,

〈evt b, evt a〉} (101)

Similarly to the case shown in equation (78), merging 〈evt a〉 with the empty
trace (equation (94)), yields the set containing a trace with just an occurrence of
a. When there are events on both sides (equation (95)), either event can occur
first and is followed by the result of merging the rest of the trace (defined as in
equations (78) and (94)). Both orderings of the events a and b can thus be seen
in equation (95).

When there is a refusal or tock event at the start (equations (96) and (97)),
the event a can still occur, but there is nothing to match the refusal or tock
event. This can also be seen in equation (98), where both tock and b are excluded
from the resulting traces, since tock is not matched. However, if b occurs before a
refusal, tock or another event that requires synchronisation (equations (99), (100)
and (101)), the a and b events can occur in either order (like in equation (95)).
No further observations are possible after a and b have been performed, since the
observation after b in these cases is not matched by a corresponding observation
after a.

Finally, if both sides begin with tock events, preceded by refusals X and Y
(equation (75)), then the tock events synchronise with each other. The result

is all the traces formed by prepending a refusal Z and the tock event to the
traces resulting from merging the rest of the trace on each side. The refusal Z
comes from merging the refusals X and Y from each side as if they were refusals
refusals on their own (deferring to equation (60).

Example 13. Merging traces from a−→Stop and b−→ c−→Stop that contain
one tock event yields the traces shown below.

〈ref {b, c,X}, evt tock〉
J {c} KT

〈ref {a, c,X}, evt tock〉
= {} (102)

〈ref {b, c,X}, evt tock〉
J {c} KT

〈ref {a, c,X}, evt tock , evt b〉
= {} (103)

〈ref {c,X}, evt tock〉
J {c} KT

〈ref {c,X}, evt tock〉
=
{〈ref {c,X}, evt tock〉,
〈ref {c}, evt tock〉, . . .} (104)

〈ref {c,X}, evt tock〉
J {c} KT

〈ref {c,X}, evt tock , evt b〉
=
{〈ref {c,X}, evt tock , evt b〉,
〈ref {c}, evt tock , evt b〉, . . .}

(105)

〈ref {c,X}, evt tock〉
J {c} KT

〈evt b, ref {X}, evt tock〉
=
{〈evt b, ref {c,X}, evt tock〉,
〈evt b, ref {c}, evt tock〉, . . .}

(106)

〈evt a, ref {a, b, c,X}, evt tock〉
J {c} KT

〈evt b, ref {a, b,X}, evt tock〉
=

{〈evt a, evt b, ref {a, b, c,X}, evt tock〉,
〈evt b, evt a,

ref {a, b, c,X}, evt tock〉,
〈evt a, evt b,

ref {a, b, c}, evt tock〉, . . .}
(107)

〈evt a, ref {a, c,X}, evt tock〉
J {c} KT

〈ref {a, c,X}, evt tock , evt b〉
=

{〈evt a, ref {a, c,X}, evt tock ,
evt b〉,

〈evt a, ref {a, c}, evt tock ,
evt b〉, . . .}

(108)

When two tock events are merged, the refusals before them are merged in a
similar way to single refusals (Example 11). In particular, refusals that do not
contain the same non-synchronised events yield no output traces, as shown in
equations (102) and (103). When the refusals before the tock events match, the
result is the traces with tock events preceded by refusals drawn from the subsets
of the union of the refusals on each side, as in equation (104). Any observations
after a tock event are then merged, as can be seen in equation (105), where a b
event follows the tock event.

Since a tock event requires synchronisation, any events that do not require
synchronisation occurring before tock in an input trace are included before it the
output traces. Thus, in equation (106) a b event occurs before the tock event.
When there are non-synchronised events at the start of the traces on both sides,
as in equation (107), the non-synchronised events can occur in either order before
the tock event. If an event on one side occurs before tock while the event on the
other side occurs after tock , the ordering with respect to tock is maintained.
This can be seen in equation (108), where a occurs before tock and b occurs
after tock .

Hiding The semantics of hiding, P \X , is defined as shown below. It is specified
as the distributed union of the traces defined by applying to each trace of P a
function hideTrace, which elides the events in X . A set is output by hideTrace
in order to properly ensure subset closure, as we discuss below as we present the
definition of hideTrace.

tttraces[[P \X]] =
⋃
{p : tttraces[[P]] • hideTrace X p}

The hideTrace function takes a trace and the set X of events to hide, and outputs
the set of traces corresponding to the input trace, with the events in X hidden.
The hideTrace function is defined recursively, considering the different cases for
the traces, as specified by the predicate below.

∀X ,Y : PΣX
tock ; e : ΣX

tock ; s : TickTockTrace •
hideTrace X 〈〉 = {〈〉} ∧ (109)
hideTrace X 〈ref Y 〉 = {Z : PY | X ⊆ Y • 〈ref Z 〉} ∧ (110)

(e ∈ X ⇒ hideTrace X (〈evt e〉a s) = hideTrace X s) ∧ (111)

(e 6∈X ⇒ hideTrace X (〈evt e〉a s) =

{t : hideTrace X s • 〈evt e〉a t}) ∧ (112)

(tock ∈ X ⇒ hideTrace X (〈ref Y , evt tock〉a s) =
hideTrace X s) (113)

(tock 6∈X ⇒ hideTrace X (〈ref Y , evt tock〉a s) =

{Z : PY ; t : hideTrace X s | X ⊆ Y • 〈ref Z , evt tock〉a t}) (114)

The first equation, (109), specifies that applying hideTrace to the empty trace
just returns the set containing the empty trace. This is because there are no
events to hide, so the trace is simply returned as-is.

The other base case of the definition is specified by equation (110), which
describes the result of applying hideTrace to a trace 〈ref Y 〉 consisting of a single
refusal. In this case, we check whether the set X of events to hide is a subset of
the refusal Y . If it is not, then some of the events in X are not refused and so
may be performed. The hiding of these events turns them into internal events,
which are unstable, so the refusal is removed and the output of hideTrace is the
empty set. When X is a subset of Y , all the traces with refusals that are subsets
of Y are included. All the subsets must be included, since some subsets may not

include X and so are removed. We must reinclude such refusals where there is a
refusal including X in order to maintain subset closure.

Equations (111) and (112) define the result of hideTrace when it is applied
to a trace starting with a non-tock event e. There are two cases to consider,
depending on whether e is in the hiding set X . Equation (111) specifies the case
where e is in X . The result is that of applying hideTrace to the remainder of the
trace, since e is hidden and removed. In the case where e is not in X , specified by
equation (112), the result is that of prepending e to each of the traces resulting
from applying hideTrace to the rest of the trace.

Finally, equations (113) and (114) define the result when hideTrace is applied
to a trace starting with a refusal Y followed by a tock event. This case can
be viewed as a combination of the cases for a non-tock event (equations (111)
and (112)) and for a single refusal (equation (110)). As for a non-tock event,
there are two cases depending on whether tock is in X or not. If tock is in X
(equation (113)), then it is hidden and the result is that of applying hideTrace
to the rest of the trace, as in equation (111). If tock is not in X (equation (114)),
then it is prepended to the result of applying hideTrace to the rest of the trace,
as in equation (112), but the refusal Y before the tock event is handled as in
equation (110). If the hiding set X is a subset of Y , then refusals drawn from
all the possible subsets are prepended before the tock . If X is not a subset of Y ,
then no traces are included, since at least one hidden event is not refused, so its
hiding creates instability, but tock can only occur from a stable state.

Example 14. Considering the traces of b −→ c −→ Stop, with the hiding set
{a, b}, the results of applying hideTrace are those shown below.

hideTrace {a, b} 〈〉 = {〈〉} (115)
hideTrace {a, b} 〈ref {a, c,X}〉 = {} (116)

hideTrace {a, b} 〈ref {a, c,X}, evt tock〉 = {} (117)
hideTrace {a, b} 〈ref {a, c,X}, evt tock , evt b〉 = {} (118)

hideTrace {a, b} 〈evt b〉 = {〈〉} (119)
hideTrace {a, b} 〈evt b, evt c〉 = {〈evt c〉} (120)

hideTrace {a, b} 〈evt b, ref {a, b,X}〉 =
{〈ref {a, b,X}〉,

〈ref {a, b}〉, . . .} (121)

hideTrace {a, b} 〈evt b, ref {a, b,X}, evt tock〉 =
{〈ref {a, b,X}, evt tock〉,

〈ref {a, b}, evt tock〉,
. . . }

(122)

Applying hideTrace to the empty trace yields just the set containing the empty
trace (equation (115)). When hideTrace is applied to a trace with a refusal that
does not include the hiding set, as in equation (116), no traces are output, since
there is no stability if the hidden event can be performed. This applies even if
some of the hidden events are refused. In equation (116) a is refused, but b is
not, and an ocurrence of b is still hidden and so introduces instability. When tock
is not hidden (as in this example), a similar rule applies to the refusal present
before a tock event, as can be seen in equations (117) and (118).

When a b event occurs at the start, as in equation (119), since b is hidden,
the only resulting trace is the empty trace. Observations after b are also sub-
ject to hiding. The event c is included on its own in the sole output trace in
equation (120), since c is not hidden. The maximal refusal after the hidden b
includes both events in the hiding set, so it is included (with its subsets), as can
be seen in equation (121). This also applies to refusals before tock events, since
tock is not hidden, as shown in equation (122).

Renaming The semantics of renaming, P [f], is defined as shown below. The
definition is similar to that of hiding in that it consists of a union of sets generated
by applying to the traces of P a function renameTrace. This function takes the
renaming function f as one of its inputs in addition to a trace p of P . We recall
that the renaming function maps elements of ΣX

tock to elements of ΣX
tock , but is

required to identify X and tock , since they cannot be renamed.

tttraces[[P [f]]] =
⋃
{p : tttraces[[P]] • renameTrace f p}

The predicate defining renameTrace is shown below. For the empty trace it
returns the set containing the empty trace (equation (123)). When renameTrace
is applied to a trace beginning with event e (equation (124)), the result is the
traces resulting from applying renameTrace to the rest of the trace, with the
event formed from applying f to e prepended.

∀ f : ΣX
tock →ΣX

tock ; e : ΣX
tock ; X : PΣX

tock ; s : seq Obs •
renameTrace f 〈〉 = {〈〉} ∧ (123)

renameTrace f (〈evt e〉a s) =

{t : renameTrace f s • 〈evt (f e)〉a t} ∧ (124)

renameTrace f (〈ref X 〉a s) =

{t : renameTrace f s; Y : PΣX
tock | X = (f ∼) L Y M • 〈ref Y 〉a t}

(125)

For a trace starting with a refusal X (equation (125)), the result is that of
prepending a corresponding refusal Y to the traces from applying renameTrace
the rest of the trace. The refusal Y is one whose image under the inverse of f
is equal to X . This means that for the events refused in X , the corresponding
events under f are refused in Y . It also allows for events not in the range of f
to be included in Y , since such events cannot be performed in any trace that
results from renaming and so must be refused (by TT2).

Example 15. We consider f to be id⊕{a 7→b}, that is, the function that maps a
to b and maps every other event to itself. Applying renameTrace f to the traces
in the semantics of a −→ Stop yields the results shown below.

renameTrace f 〈〉 = {〈〉} (126)

renameTrace f 〈evt a〉 = {〈evt b〉} (127)

renameTrace f 〈ref {b, c,X}〉 = {} (128)

renameTrace f 〈ref {c,X}〉 = {〈ref {a, c,X}〉, 〈ref {c,X}〉} (129)

renameTrace f 〈ref {c,X}, evt tock〉 =
{〈ref {a, c,X}, evt tock〉,

〈ref {c,X}, evt tock〉} (130)

renameTrace f 〈evt a, ref {a, b, c,X}〉 =
{〈evt b, ref {a, b, c,X}〉,

〈evt b, ref {b, c,X}〉} (131)

Renaming the empty trace results in just the empty trace (equation (126)).
Applying renameTrace to a trace with just a, results in a being renamed by f
to b (equation (127)).

For a refusal, we must find corresponding refusals that map to under the
inverse image of f . The maximal initial refusal {b, c,X} thus yields no traces, as
shown in equation (128), since any refusal that includes b has an inverse image
under f including both a and b. Since our input trace does not refuse a, we
cannot, therefore, output any refusal that refuses b, but without refusing b we
cannot satisfy the refusal of b in the input trace, so there are no corresponding
refusals for {b, c,X}. However, the subset refusal {c,X} is the inverse image
under f of both {a, c,X} and {c,X}, since nothing maps to a under f . The
result of applying renameTrace to a trace consisting of the refusal {c,X} is thus
the set containing the traces with refusals {a, c,X} and {c,X} (equation (129)).

For a trace consisting of a refusal followed by a tock event (equation (130)),
the refusal is handled as in equations (128) and (129) and the tock event is
included as-is, since f maps tock to itself (as all renaming functions should).
Refusals occuring after renamed events are also handled in the same way as in
equations (128) and (129), as can be seen in equation (131).

This concludes our explanation of the X-tock model. In the next section we
show how to use FDR to reason about tock -CSP processes using X-tock .

5 Model-checking with FDR

We describe how timed sections can be used to specify processes in Section 5.1,
and then in Section 5.2 we show how refinement in X-tock can be checked.

5.1 Processes

In FDR, processes are defined using CSPM, the machine-readable version of CSP.
For tock -CSP this means that we use the standard CSPM syntax within a timed
section, with the exception of the untimed operators StopU and4U that need
to be declared outside of a timed section. For example, for the untimed interrupt
operator this means declaring a parametrised definition UInt, for example, that
uses the standard CSPM syntax /\ for interrupt as UInt(P,Q) = P /\ Q and then
using UInt within a timed section as required.

A timed section is written Timed(et) {...}, where ... is a sequence of
declarations, and et is a function from events to time, specifying how many
tock events follow an event. Because events in our model are instantaneous et

is defined as zero for every event. Below we show Example 3’s CSPM encoding.

Example 16.
channel move, obs, halt, tock

USTOP = STOP

et(_) = 0

Timed(et) { C(s) = timed_priority((move -> STOP) /\

(obs -> (halt -> SKIP [] (WAIT(s);USTOP)))) }

Before the timed section we declare: events move, obs, halt and tock; process
USTOP that corresponds to StopU ; and the function et. (Events and functions
can be equally declared inside a timed section.) Within the timed section C is
specified using the CSPM syntax with timed_priority2 applied, which enforces
maximal progress by giving X and τ priority over tock. Here C is parametric,
so that s can be instantiated to a particular value for model-checking.

Processes in a timed section are implicitly translated to ensure tock is offered
whenever time is allowed to pass. For example, a prefixing e -> P is rewritten
as X = e -> P [] tock -> X, where X is a process that offers event e and tock

in an external choice ([]) so that time can pass before accepting e. This means
that, as explained, the behaviour of operators in a timed section is that of the
tock -CSP operators we define in X-tock as described in Section 4.

Parallel composition operators are translated to include tock in their syn-
chronisation sets to ensure time is uniform. For example, the parallel composition
P [| s |] Q, of processes P and Q synchronising on a set of events s, is translated
to include tock in s as P [| union(s,{tock}) |] Q. As termination of a par-
allel composition requires termination of both operands, for SKIP not timestop a
parallel composition, SKIP is translated to TSKIP = SKIP [] tock -> TSKIP.
Prioritisation of TSKIP ensures that it matches the behaviour of Skip of X-tock .

We note that timed_priority has to be applied at the outer level of a process
because it does not distribute through FDR’s parallel composition operators. For
example, timed_priority(SKIP) ||| timed_priority(WAIT(1)), where |||

is a parallel composition where only tock is included as part of the synchronisa-
tion set, timestops as the application to SKIP removes the possibility to perform
tock. On the other hand timed_priority(SKIP ||| WAIT(1)) behaves in the
expected way, that is, it can perform a single tock followed by termination.

5.2 Refinement

To encode the refinement relation for X-tock we tailor Mestel and Roscoe [18]’s
approach to encoding refusals using traces, and extend it to cater for termination,
so that X-tock refinement is reduced to traces refinement. We begin this section
by explaining how refusals are encoded, followed by the enconding of X-tock
traces, and termination. Finally we illustrate the technique with examples.

Refusals Given a set Σtock we define Σ′tock , where each e ∈ Σtock is replaced
by a dashed counterpart e ′, used to indicate that e is refused. For a process P ,

2 cs.ox.ac.uk/projects/fdr/manual/cspm/prelude.html#function timed priority

https://cs.ox.ac.uk/projects/fdr/manual/cspm/prelude.html#function_timed_priority

a context C1 is defined below to define a process C1[P] whose traces encode the
refusals of P . We note that C1, and other definitions to follow, are specified in
FDR outside of a timed section as they are not tock -CSP processes.

Definition 2. C1[P] =̂ Pri≤1(P ||| RUN (Σ′tock ∪ {stab}))

Process P is composed in interleaving (|||), a form of parallel composition where,
outside a timed section, no synchronisation is required, with the process RUN (Σ′tock∪
{stab}) that offers events in Σ′tock , including a dashed version of tock , and the
event stab that encodes an empty refusal, in an external choice forever. This
composition is followed by the application of Pri≤1 to prioritise each event e
over e ′, so that e ′ is only available whenever e is refused stably. Event stab is
prioritised lower than τ and X, so an empty refusal can be observed whenever
a process is not divergent or terminated, that is, for example, not the case for
div.

The operator Pri≤(P) [20], implemented in FDR as prioritisepo, is a more
general version of timed_priority, whereby events can be prioritised according
to a partial order ≤. The behaviour is that of P , but changed so that whenever
events a and b are available, then if b is of strictly higher priority than a, that
is, a < b, then a, and the following behaviour from a, is pruned. For example
prioritising the process a−→P @b−→Q with a < b would yield b−→Pri≤(Q).
In the above definition, ≤ is ≤1, defined by e <1 e ′.

To illustrate the operational effect of C1 we consider the following example,
assuming that a is the only event in Σ.

Example 17. F =̂ (a −→ Stop) @ StopU

tttraces[[F]] = {〈〉, 〈ref {tock ,X}〉, 〈evt a〉, 〈evt a, ref ΣX, evt tock〉, . . .}
traces(C1[F]) = {〈〉, 〈stab, tock ′〉, 〈a〉, 〈a, a ′, stab, tock〉, 〈stab, tock ′, a〉, . . .}

Process F offers to do a immediately, because of the timestop StopU , and then
deadlocks. Its traces in X-tock with maximal refusals are: the empty sequence;
the sequence with the only refusal containing both tock and X; and the sequence
with event a, possibly concatenated with 〈ref ΣX, evt tock〉 any number of times,
corresponding to the behaviour of StopU after event a has happened.

The Labelled Transition System (LTS) resulting from the application of the
operational semantics of CSP, which can be calculated using FDR, is shown
in Fig. 2a. The application of C1 to F introduces additional transitions corre-
sponding to the events being refused at each state. Thus in Fig. 2a, we have that
in the initial state tock is refused, and so events stab and tock ′ become available
in Fig. 2b, and similarly for the next state. We note that, for now, we are not
considering termination, which we discuss later on.

The trace 〈stab, tock ′, a〉 encoding the trace 〈ref {tock}, evt a〉, however, is
undesirable because, in a X-tock trace, after a refusal the only possible event is
tock . Next we introduce another context C2 to eliminate such undesirable traces.

Semantics Having encoded refusal events using C1[P], it is then necessary to
ensure they can only occur as permitted by the X-tock model. Thus, we define

a

tock

(a) LTS for F .

a

stab, tock ′

a ′, stab, tock

(b) Application of C1.

a

a ′, stab, tock

stab, tock ′
stab, tock ′

(c) Application of C2.

Fig. 2. LTS calculated from F and stepwise application of contexts C1 and C2.

another context C2[P], where C1[P] is composed in parallel with a process Sem
synchronising on events on the union of Σtock , Σ′tock and {stab}. The role of
Sem is to eliminate traces of C1[P] that are not valid in X-tock .

Definition 3. C2[P] =̂ C1[P] JΣtock ∪Σ′tock ∪ {stab} K Sem

The process Sem is defined below, where we use the standard (untimed) oper-
ators of CSP for external choice and prefixing, and Σ′tock ,stab = Σ′tock ∪ {stab}.

Definition 4.

Sem =̂

(
@ e : Σtock • e −→ Sem

)
@
(
@ r : Σ′tock ,stab • r −→ Ref

)
Ref =̂

(
@ r : Σ′tock ,stab • r −→ Ref

)
@ tock −→ Sem

Sem offers every event e from Σtock in an external choice followed by a recursion,
and every event r encoding refusals from Σ′tock ,stab also in an external choice,
but followed by the behaviour of Ref . That process also offers events encoding
refusals from Σ′tock ,stab followed by a recursion, but tock is also offered followed
by the behaviour of Sem. So, a trace of Sem includes any number of original
events from Σtock , until a refusal event r from Σ′tock ,stab occurs, when we then
have any number of such events, before a tock , and we can again have original
events. This encodes the possibility to observe events from a refusal set at the
end of a trace of original events, and before tock events.

To illustrate the application of C2 to process F from Example 17 we consider
the LTS in Fig. 2c. The self transition on the initial node obtained from the
application of C1 is replaced by a transition on the same events, stab and tock ′,
to a node that accepts these events indefinitely, but not a. This is because
initially tock can be refused, and so a refusal event tock ′, encoding a refusal set
where tock is refused, cannot be followed by any regular event.

Example 18.

traces(C2[F]) = {〈〉, 〈stab, tock ′〉, 〈a〉, 〈a, a ′, stab, tock〉, 〈stab, tock ′, stab, . . .〉, . . .}

The X-tock traces of F before observing event a are encoded by traces 〈〉,
〈stab, . . .〉, 〈tock ′, . . .〉, where tock ′ and stab are offered continuously. This is

effectively an encoding of the set {tock} via traces. Traces of F after a are sim-
ilarly encoded by 〈a〉 concatenated with 〈a ′, . . .〉 or 〈stab, . . .〉 any number of
times, with tock being possible after each event a ′ or stab in the traces. More
importantly, subset inclusion of refusal sets corresponds to subset inclusion over
the set of encoding traces, which is key to reducing refinement of traces with
refusal information, that is, X-tock traces, to traces refinement.

Termination The original encoding in [18] does not account for termination.
For example, we have that C1[Skip] = C1[Stop]. Because in C1 there is an
interleaving, termination of Skip does not lead to termination of C1[Skip], and
instead refusal information is added exactly as in the case of Stop. To cater for
termination, we extend the encoding by defining a third context C3 and extending
Σtock with a fresh event tick that explicitly encodes X.

Definition 5. C3[P] =̂ C2[P ; tick −→ Skip]

Thus we sequentially compose P with the prefixing on event tick before applying
context C2, so that actual termination is not masked by the interleaving in C1.
This enables us to establish the following key result whereby P is refined by Q
in the X-tock model if, and only if, its encoding using C3[P] is refined by C3[Q] in
the traces model (T) of CSP. A script with the complete encoding is available3.

Theorem 1. P v Q ⇔ C3[P] vT C3[Q].

Proof. Similarly to that outlined in [18] by following the above construction.

Full mechanisation in CSPM The above construction is mechanised in CSPM, as
shown in Figure 3, using a parametric module MS(Sigma) of name MS and whose
only parameter Sigma corresponds to Σ. A CSPM module consists of three parts:
an optional sequence of parameters that allows modules to be instantiated with
different values, a sequence of zero or more declarations internal to a module,
and a sequence of declarations to be made visible outside a module.

In our case, we have a single parameter Sigma. Within the internal declara-
tions of MS(Sigma) we have channels stab and tick, corresponding to stab and
tick , and a channel ref whose type includes events in Sigma, and the events tick
and tock. This parametric declaration is a practical way of specifying events en-
coding refusals, where e ′ events are encoded as ref.e, and so ref corresponds
to Σ′tock ,tick = Σ′tock ∪ {tick ′}. The partial order is a relation specified by pairs
of events (x,ref.x), when x has priority over ref.x, thus corresponding to ≤1.

Process C1(P) is the mechanised version of C1[P], here specified as the priori-
tisation of the interleaving of processes P and RUN({|ref,stab|}). The function
prioritisepo takes four parameters: a process to be prioritised, a set of events
that are affected by prioritisation, a partial order, and a set of events whose
priority is the same as X and τ . In our case, we have that: the set of events
affected by prioritisation is the union of Sigma, the channel set ref, and events

3 github.com/robo-star/tick-tock-CSP/tree/master/fdr

https://github.com/robo-star/tick-tock-CSP/tree/master/fdr

module MS(Sigma)

channel stab, tick

channel ref:union(Sigma,{tock,tick})

order = {(x,ref.x) | x:union(Sigma,{tock,tick})}

C1(P) = prioritisepo(P ||| RUN({|ref,stab|}),

union(Sigma,{|ref,tock,tick|}), order,

union(Sigma,{tock,tick}))

C2(P) = C1(P) [| union(Sigma,{|ref,stab,tock|}) |] Sem

Sem = ([] x : union(Sigma,{tock,tick}) @ x -> Sem)

[] (ref?x -> Ref)

[] (stab -> Ref)

Ref = (ref?x -> Ref) [] (stab -> Ref) [] tock -> Sem

exports

C3(P) = C2(P ; tick -> SKIP)

endmodule

Fig. 3. Mechanisation in CSPM

tock and tick; the order is that specified by the ordered pairs in order; and
events tick, tock and those in Sigma are specified as having the same priority
as X and τ . Maximal progress is not affected assuming that P itself has already
been prioritised using timed_priority as required in tock -CSP.

The mechanised version of context C2[P] is C2(P). The definition is very
similar. The synchronisation set is that obtained as the union of Sigma, the
channel set ref, and the events stab, tick and tock, corresponding to the
union Σtock ,tick ∪Σ′tock ,tick ∪ {stab} in the definition of C2.

Finally, C3[P] is defined by C3(P) within MS(Sigma) as being exported, that
is, it can be used from outside the module. The module MS can be instantiated,
for example, as M for a set of events a and b using instance M = MS({a,b}), and
thus M::C3(P) can be used to access process C3 within module MS instantiated
with Sigma as the set of events {a,b}.

Examples To illustrate the application of our refinement technique to use of
FDR to check for refinement in tock -CSP we reconsider Examples 1 and 2.

Example 1 We consider processes R and S of Example 1, defined outside a
timed section to illustrate the flexibility in defining tock -CSP processes in FDR,

show their equivalent X-tock definitions in a timed section, by way of refinement
checking, and compare the result to failures refinement.

R = (a -> SKIP [] b -> SKIP [] tock -> R) |~| RUN({tock})

S = (a -> SKIP [] tock -> S) |~| RUN({tock})

Process R makes an internal choice (|~|). It may offer events a, b and tock in
an external choice ([]), where tock is followed by a recursion on R, and a and b

lead to termination (SKIP), or offer tock indefinitely. RUN({tock}) is effectively
a timed deadlock, offering only the event tock indefinitely. Similarly, process S

may also offer tock indefinitely, or decide to offer a and tock in an external
choice, where a leads to termination, and tock to a recursion on S.

Processes R and S can be restated as R1 and S1 below in a timed section,
using a time-synchronising external choice and Stop.

Timed(et) {

R1 = (a -> SKIP [] b -> SKIP) |~| STOP

S1 = (a -> SKIP) |~| STOP

assert M::C3(timed_priority(R1)) [T= M::C3(R)

assert M::C3(R) [T= M::C3(timed_priority(R1))

assert M::C3(timed_priority(S1)) [T= M::C3(S)

assert M::C3(S) [T= M::C3(timed_priority(S1))

}

To check that R1 is equivalent to R, and that S1 is equivalent to S, we instantiate
MS as instance M = MS({a,b}) and then check that the refinement over traces
([T=) holds in both directions for each pair of processes. Namely, in the case
of R1 we check that, having applied timed_priority and put it into context
M::C3, it refines and is refined by M::C3(R). Similarly for the case of S1 and S.
As expected FDR finds no problem with these assertions.

More importantly, however, in the failures and failures-divergences model, R
is refined by S, because, even though S does not offer b, refusal of b is a possible
behaviour of R. In a timed setting, however, this should not be the case as we
previously observed in Section 1. To check that indeed this refinement does not
hold in X-tock we state it as a negated assertion as follows.

assert not M::C3(timed_priority(R1)) [T= M::C3(timed_priority(S1))

Above, we observe the use of not as the assertion is expected to fail. FDR yields a
counter-example where after the trace <M::ref.b,tock> process S1 can perform
event a but R1 cannot. That is, having refused b, followed by a tock , process R1
then behaves as Stop, whereas S1 can perform a.

Example 2 In the case of Example 2, we observe that the behaviour of T and
U differed when considering a refusal testing semantics, that is, the behaviour
within a time unit is not as expected in the failures model. We first restate
processes T and U in a timed section as follows.

Semantic Model Termination Deadlines Liveness

Stable failures [1] X X current

Refusal testing [2] X X full-history

Discrete-time failures [21] X × full-history

Discrete-time refusals [22] × × timed-history

Timed testing [22] × × timed-history

X-tock X X timed-history

Table 3. Comparison of semantic models using tock .

Timed(et) {

T = (a -> STOP [] b -> STOP) |~| c -> STOP

U = (a -> STOP |~| c -> STOP) [] (b -> STOP |~| c -> STOP)

T1 = timed_priority(T [] USTOP)

U1 = timed_priority(U [] USTOP)

}

Furthermore, to analyse their behaviour within a single time unit, in the context
of X-tock , we define T1 = T @ StopU and U1 = U @ StopU , that is, in both
U1 and T1, the prefixing on a, b or c must be immediate. Instantiating MS as
instance M = MS({a,b,c}) we can then state the following assertions.

assert M::C3(timed_priority(T1)) [T= M::C3(timed_priority(U1))

assert M::C3(timed_priority(U1)) [T= M::C3(timed_priority(T1))

FDR confirms that they both hold, and so T1 = U1 as required, that is, refine-
ment holds within zero time, as previously discussed in Section 1.

6 Related work

In Table 3 we give a comparison of the different semantic models for tock -CSP
according to: whether they account for termination; whether they support dead-
lines; and how liveness information is recorded. We classify liveness as: current
if it is relative to the sequence of events only; full -history if, in addition, it takes
into account liveness across the whole history of interactions, including before
each event; timed -history if the history is only in relation to liveness of previ-
ous time units, but not before each event. For timed refinement of tock -CSP,
where the laws of failures semantics of CSP hold within each time unit, it is
timed -history liveness that is required as we have shown.

Most case studies in the tock -CSP literature using refinement focus on safety
only[11,10], for which the trace semantics of CSP is adequate. For example, Evans
and Schneider [10] consider an embedding of tock -CSP in PVS [23] using the
traces model for analysis of time-dependent security properties. An embedding
in Isabelle/HOL of the stable-failures model of CSP has also been considered
by Isobe and Roggenbach [24]. However, as already discussed, to reason about
timed refinement we need a richer model encompassing refusals over time.

The earliest introduction to tock -CSP appears in Chapter 14 of Theory and
Practice of Concurrency [25]. Despite using timestops, Roscoe later describes
these undesirably as “breaching the laws of nature by preventing time from
progressing” [1]. Similarly, Ouaknine’s discrete-time refusal testing model [2]
does not admit timestops. Like Timed CSP, there is no explicit control of time,
thus time can pass arbitrarily between events, but Zeno behaviour is forbidden.

More recently, Lowe and Ouaknine [22] revisited the discrete-time refusal
testing model by considering traces where refusals are only recorded before tock ,
but which also do not admit timestops. Termination is also not considered in
that work. On the other hand, they have also proposed a timed testing model
whereby the null refusal is dropped. That model is similar to ours, in that we
can also record refusals before a tock and do not record null refusals.

The discrete-time failures model is perhaps closest to ours, but unlike ours,
does not allow tock to be refused and so cannot model deadlines. Armstrong
et al. [21] explore refinement checking in that model by using the refusal test-
ing model in FDR2. Because refusals before events other than tock need to be
“ignored” to yield the right refinement relation, and not that of refusal testing,
the construction is not trivial. A different encoding has also been considered by
Roscoe [26] using the concept of slow-abstraction. Our model, on the other hand,
allows the refusal of tock , as required for the specification of deadlines, is fully
specified in Isabelle/HOL, and is amenable to model checking with FDR using
an intuitive encoding via traces that accounts for termination.

7 Conclusions

The inclusion of the event tock in CSP enables a rich and flexible approach
to modelling time, which makes reusing theories and tools feasible. However,
as discussed, despite several models employing tock , none have, so far, ade-
quately catered for deadlines, termination, capturing erroneous Zeno behaviour
and timed refinement in a way that is compatible with a view of tock -CSP as a
language with a failures-based semantics within each time unit.

In this work we have considered tock -CSP as a language on its own right by
defining its operators, consistently with their use in FDR’s timed sections, and
a semantic model adequate for timed refinement. The model, and its operators,
have been mechanised in Isabelle/HOL for the purpose of establishing key re-
sults. It is an environment for mechanical proving of laws and paves the way for
the development of symbolic refinement tools for tock -CSP.

Despite the denotational setting of our study, an intuitive approach [18] using
priorities can be used to perform analysis using FDR. This is at the expense of
introducing additional processes and events, for encoding via traces. However,
because traces refinement checking can be parallelised by FDR, in our experience
the approach remains tractable for models of modest complexity.

It is in our plans to prove laws of X-tock , using our mechanisation, in support
of a refinement strategy for semi-automatic generation of sound simulations for
robotics [14]. It is clear that Pri≤ endows CSP with extra expressive power [20],

allowing, for example, regular events to be made urgent by prioritising them
over tock . It remains to be seen how it can play a direct role in our semantics
beyond its use in FDR to ensure maximal progress.

Acknowledgements This work is funded by the EPSRC grants EP/M025756/1
and EP/R025479/1, and by the Royal Academy of Engineering. No new primary
data was created as part of the study reported here.

References

1. Roscoe, A.W.: Understanding concurrent systems. Springer (2010)
2. Ouaknine, J.: Discrete analysis of continuous behaviour in real-time concurrent

systems. PhD thesis, University of Oxford (2000)
3. Davies, J.: Specification and proof in real time CSP. Number 6. Cambridge

University Press (1993)
4. Ouaknine, J., Worrell, J.: Timed CSP = closed timed automata. Electronic Notes

in Theoretical Computer Science 68(2) (2002) 142–159
5. Roscoe, A., Reed, G.: A timed model for communicating sequential processes.

Theoretical Computer Science 58 (1988)
6. Schneider, S.: Concurrent and Real-time systems. Wiley (2000)
7. Gibson-Robinson, T., Armstrong, P., Boulgakov, A., Roscoe, A.: FDR3 — A

Modern Refinement Checker for CSP. In brahm, E., Havelund, K., eds.: Tools and
Algorithms for the Construction and Analysis of Systems. Volume 8413 of Lecture
Notes in Computer Science. (2014) 187–201

8. Leuschel, M., Butler, M.: ProB: A model checker for B. In: International Sympo-
sium of Formal Methods Europe, Springer (2003) 855–874

9. Sun, J., Liu, Y., Dong, J.S., Pang, J.: PAT: Towards flexible verification under
fairness. Volume 5643 of Lecture Notes in Computer Science., Springer (2009)
709–714

10. Evans, N., Schneider, S.: Analysing time dependent security properties in CSP
using PVS. In: European Symposium on Research in Computer Security, Springer
(2000) 222–237

11. Kharmeh, S.A., Eder, K., May, D.: A design-for-verification framework for a config-
urable performance-critical communication interface. In: International Conference
on Formal Modeling and Analysis of Timed Systems, Springer (2011) 335–351

12. Isobe, Y., Moller, F., Nguyen, H.N., Roggenbach, M.: Safety and line capacity in
railways–an approach in Timed CSP. In: International Conference on Integrated
Formal Methods, Springer (2012) 54–68

13. Göthel, T., Bartels, B.: Modular design and verification of distributed adaptive
real-time systems. In Vinh, P.C., Vassev, E., Hinchey, M., eds.: Nature of Compu-
tation and Communication, Cham, Springer International Publishing (2015) 3–12

14. Cavalcanti, A., Sampaio, A., Miyazawa, A., Ribeiro, P., Conserva Filho, M., Didier,
A., Li, W., Timmis, J.: Verified simulation for robotics. Science of Computer
Programming (2019)

15. Phillips, I.: Refusal testing. Theoretical Computer Science 50(3) (1987) 241–284
16. Mukarram, A.: A refusal testing model for CSP. PhD thesis, University of Oxford

(1993)
17. Nipkow, T., Wenzel, M., Paulson, L.C.: Isabelle/HOL: a proof assistant for higher-

order logic. Springer (2002)

18. Mestel, D., Roscoe, A.: Reducing complex CSP models to traces via priority.
Electronic Notes in Theoretical Computer Science 325 (2016) 237–252

19. Baxter, J., Ribeiro, P.: tick-tock-CSP in Isabelle/HOL. https://github.com/

robo-star/tick-tock-CSP/ (April 2019)
20. Roscoe, A.: The expressiveness of CSP with priority. Electronic Notes in Theoret-

ical Computer Science 319 (2015) 387–401
21. Armstrong, P., Lowe, G., Ouaknine, J., Roscoe, A.: Model checking Timed CSP.

In Proceedings of HOWARD (Festschrift for Howard Barringer) (2012)
22. Lowe, G., Ouaknine, J.: On timed models and full abstraction. Electronic Notes

in Theoretical Computer Science 155 (2006) 497–519
23. Owre, S., Rushby, J.M., Shankar, N.: PVS: A prototype verification system. In:

International Conference on Automated Deduction, Springer (1992) 748–752
24. Isobe, Y., Roggenbach, M.: A generic theorem prover of CSP refinement. In

Halbwachs, N., Zuck, L.D., eds.: Tools and Algorithms for the Construction and
Analysis of Systems, Berlin, Heidelberg, Springer Berlin Heidelberg (2005) 108–123

25. Roscoe, A.W.: The theory and practice of concurrency. (1998)
26. Roscoe, A.W.: The automated verification of timewise refinement. (2013)

https://github.com/robo-star/tick-tock-CSP/
https://github.com/robo-star/tick-tock-CSP/

	Reasoning in tock-CSP with FDR

