
RoboCert Reference Manual

Version 0.1— draft of December 2, 2022

Matt Windsor

www.cs.york.ac.uk/robostar

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain a copy
of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required by
applicable law or agreed to in writing, software distributed under the License is distributed on an
“as is” basis, without warranties or conditions of any kind, either express or implied. See the
License for the specific language governing permissions and limitations under the License.

http://creativecommons.org/licenses/by-nc/3.0

Contents

Introduction . ix
0.1 How to read this manual ix
0.2 Running examples x

I Core Language

1 Core: metamodel . 5
1.1 Introduction 5
1.1.1 Example . 5
1.1.2 How to read the rest of this chapter . 6

1.2 Top-level 6
1.2.1 CertPackage . 6
1.2.2 Groupa . 7
1.2.3 ConstAssignment . 7

1.3 Targets 8
1.3.1 ComponentTargeta . 8
1.3.2 CollectionTargeta . 8

1.4 Values 9
1.4.1 Use of Expressionrc . 9
1.4.2 ValueSpecificationa . 9

1.5 Assertions 10
1.5.1 AssertionGroup . 10
1.5.2 Assertion and Propertya . 10
1.5.3 CoreProperty . 11
1.5.4 SemanticModel . 11

2 Core: textual syntax . 13
2.1 Conventions 13
2.1.1 Terminals . 13

2.2 Top-level 13
2.2.1 Groupa . 13
2.2.2 ConstAssignment . 14

2.3 Targets 14
2.4 Values 14
2.5 Assertions 15

3 Core: well-formedness . 17
3.1 Introduction 17
3.2 General conditions 17
3.3 Top-level 18
3.3.1 CertPackage (§ 1.2.1) . 18
3.3.2 Groupa (§ 1.2.2): CG . 18
3.3.3 SpecificationGroup: CGs . 18
3.3.4 ConstAssignment (§ 1.2.3): CC . 19

3.4 Targets 19
3.5 Values 19
3.5.1 ValueSpecificationa (§ 1.4.2): CV . 19
3.5.2 ExpressionValueSpecification: CVe . 19
3.5.3 WildcardValueSpecification: CVw . 20

3.6 Assertions 20
3.6.1 Propertya . 20
3.6.2 CoreProperty (§ 1.5.3): CPc . 20

II Sequence Notation

4 Sequences: metamodel . 25
4.1 Introduction 25
4.1.1 Naming and UML compatibility . 25
4.1.2 Ordering and timing . 25
4.1.3 Temperature . 26

4.2 Interactions 26
4.2.1 Actora . 27
4.2.2 Interaction . 27

4.3 Interaction fragments 29
4.3.1 OccurrenceFragment . 30
4.3.2 BlockFragmenta . 30
4.3.3 DeadlineFragment . 30
4.3.4 LoopFragment . 31
4.3.5 OptFragment . 31
4.3.6 UntilFragment . 32
4.3.7 DiscreteBound . 34

4.3.8 BranchFragmenta . 34
4.3.9 AltFragment . 35
4.3.10 XAltFragment . 35
4.3.11 ParFragment . 36
4.3.12 InteractionOperand . 37
4.3.13 Guarda . 37

4.4 Occurrences 37
4.4.1 MessageOccurrence . 38
4.4.2 WaitOccurrence . 39
4.4.3 DeadlockOccurrence . 39

4.5 Messages 40
4.5.1 MessageSeta . 40
4.5.2 NamedMessageSet . 40
4.5.3 Message . 41
4.5.4 MessageTopica . 41

4.6 Assertions 42
4.6.1 SequenceProperty . 42

5 Sequences: well-formedness . 43
5.1 Sequences 43
5.1.1 Actora (§ 4.2.1) . 43
5.1.2 TargetActor . 43
5.1.3 ComponentActor: SAc . 43
5.1.4 World . 43
5.1.5 Interaction (§ 4.2.2) . 43

5.2 Fragments 44
5.2.1 InteractionFragmenta (§ 4.3) . 44
5.2.2 OccurrenceFragment (§ 4.3.1) . 44
5.2.3 CombinedFragmenta . 44
5.2.4 BlockFragmenta (§ 4.3.2): SBl . 44
5.2.5 DeadlineFragment (§ 4.3.3): SD . 44
5.2.6 LoopFragment (§ 4.3.4) . 45
5.2.7 OptFragment (§ 4.3.5) . 45
5.2.8 UntilFragment (§ 4.3.6: SU) . 45
5.2.9 DiscreteBound (§ 4.3.7): SDb . 45
5.2.10 BranchFragmenta (§ 4.3.8): SBr . 46
5.2.11 AltFragment (§ 4.3.9) . 46
5.2.12 XAltFragment (§ 4.3.10) . 46
5.2.13 ParFragment (§ 4.3.11) . 46
5.2.14 InteractionOperand (§ 4.3.12) . 46
5.2.15 Guarda (§ 4.3.13) . 46
5.2.16 EmptyGuard . 46
5.2.17 ExprGuard: SGe . 46
5.2.18 ElseGuard . 47

5.3 Occurrences 47
5.3.1 Occurrencea (§ 4.4) . 47
5.3.2 MessageOccurrence (§ 4.4.1) . 47
5.3.3 LifelineOccurrence: SLo . 47
5.3.4 WaitOccurrence (§ 4.4.2): SW . 47

5.3.5 DeadlockOccurrence (§ 4.4.3) . 47

5.4 Messages 47
5.4.1 MessageSeta (§ 4.5.1) . 47
5.4.2 NamedMessageSet (§ 4.5.2) . 48
5.4.3 Message (§ 4.5.3) . 48
5.4.4 MessageTopica (§ 4.5.4) . 49
5.4.5 EventTopic . 49
5.4.6 OperationTopic . 49

5.5 Assertions 49

6 Sequences: textual syntax . 51
6.1 Interactions 51
6.1.1 Actora . 51
6.1.2 Interaction . 51

6.2 Fragments 51
6.2.1 BlockFragmenta . 52
6.2.2 DeadlineFragment . 52
6.2.3 LoopFragment . 52
6.2.4 OptFragment . 52
6.2.5 UntilFragment . 52
6.2.6 BranchFragmenta . 52
6.2.7 AltFragment . 52
6.2.8 XAltFragment . 52
6.2.9 ParFragment . 53
6.2.10 InteractionOperand . 53
6.2.11 Guarda . 53

6.3 Occurrences 53
6.3.1 MessageOccurrence . 53
6.3.2 WaitOccurrence . 53
6.3.3 DeadlockOccurrence . 53

6.4 Messages 54
6.4.1 MessageSeta . 54
6.4.2 NamedMessageSet . 54
6.4.3 Message . 54
6.4.4 MessageTopica . 54

6.5 Assertions 55

III Low-Level Language Interoperability

7 CSPM . 61
7.1 Metamodel 61
7.1.1 CSPGroup . 61
7.1.2 CSPProperty . 61

7.2 Well-formedness conditions 61
7.2.1 CSPGroup (§ 7.1.1) . 62
7.2.2 CSPProperty (§ 7.1.2) . 62

IV Semantics

8 Introduction . 65
8.1 How to read these chapters 65

9 General Definitions . 67
9.1 Core language 67
9.1.1 Values (§ 1.4) . 67

9.2 Sequence notation 67
9.2.1 Interactions (§ 4.2.2) . 68
9.2.2 Fragments (§ 4.3) . 68
9.2.3 Occurrences (§ 4.4) . 69
9.2.4 Messages (§ 4.5) . 70

10 Timed Semantics: tock-CSP . 71
10.1 Relationship to the generator 71
10.2 Note to the reader 71
10.3 Dependencies on the RoboChart semantics 72
10.4 Core language 72
10.4.1 Top-level (§ 1.2) . 72
10.4.2 Targets (§ 1.3) . 72
10.4.3 Values (§ 1.4) . 72
10.4.4 Assertions (§ 1.5) . 74

10.5 Sequence notation 75
10.5.1 Assertions (§ 4.6) . 75
10.5.2 Sequences (§ 4.2) . 75
10.5.3 Fragments (§ 4.3) . 77
10.5.4 Occurrences (§ 4.4) . 78
10.5.5 Messages (§ 4.5) . 79
10.5.6 The until process . 83
10.5.7 Memory . 83

A Language changelog . 85
A.1 This draft 85
A.2 Version 0.1 (2022-05-20) 85

Credits . 87

Bibliography . 89

Introduction

RoboCert is a language for expressing properties of RoboStar-familymodels (RoboChart, RoboSim,
and so on). It provides graphical and textual notations that enable roboticists to express both
specifications over, and examples of, robot behaviour. By specifying their properties in RoboCert,
users benefit from automated checking of those properties through the usual RoboStar formal
reasoning stack (tock-CSP, PRISM, Isabelle/UTP, and more).

Our design aims for RoboCert are as follows. First, its notations should expose as many of
the characteristic features of RoboStar notations (and robotics in general) as possible: platforms,
events, operations, timing, probability, and so on. Second, graphical notations should be familiar to
practitioners by adopting conventions from existing notations (such as UML and ITU standards).
Third, textual notations should be legible with minimal understanding of RoboCert specifics.

This document describes version 0.1 of RoboCert. This is a working prototype of RoboCert,
including support for tock-CSP checking of both raw CSP refinements and UML-style sequence
diagrams against RoboChart models.

0.1 How to read this manual

This section discusses the layout and conventions used in this manual.

Structure

This manual is laid out as follows:
1. Information about RoboCert, its purpose, and this manual;
2. An introduction to each notation supported by RoboCert, discussing the metamodel and any

concrete notations attached to each;
3. The formal semantics of RoboCert, provided as a separate development for each target

verification language (CSP, PRISM, etc.).

x Chapter 0. Introduction

Typography
This manual uses various typographical conventions. Some chapters have extra conventions not
discussed here; these appear in similar sections at the start of the chapter.

Metamodel
• Class names look like this.

– Class names with superscript rc, like thisrc, reference RoboChart class names.
• Feature names look like this.

– Feature names with superscript d, like thisd, are derived: their value can be computed
from other features and the model object graph. While the tooling defines many derived
features, this manual only mentions those that participate in well-formedness conditions
or are helpful for understanding the model.

• Enumeration variants look like THIS.

Syntax
• Concrete textual syntax looks like this. Boldface denotes keywords in the textual language.

RFC 2119
The key wordsmust,must not, required, shall, shall not, should, should not, recommended,
may, and optional, when in boldface, are to be interpreted as described in RFC 2119.

0.2 Running examples
This manual makes use of the following running examples, corresponding to real, publicly available
RoboChart case studies:
Segway The Osoyoo Segway robot, model version 4, by Baxter and Cavalcanti.

https://robostar.cs.york.ac.uk/case_studies/segway/index.html

I
1 Core: metamodel . 5
1.1 Introduction
1.2 Top-level
1.3 Targets
1.4 Values
1.5 Assertions

2 Core: textual syntax . 13
2.1 Conventions
2.2 Top-level
2.3 Targets
2.4 Values
2.5 Assertions

3 Core: well-formedness 17
3.1 Introduction
3.2 General conditions
3.3 Top-level
3.4 Targets
3.5 Values
3.6 Assertions

Core Language

3

The RoboCert core language has constructs and syntactic conventions that are common across,
or sit above, the various sub-notations. It includes:

• the top-level structure of packages, sub-notations, and assertions;
• the core properties (deadlock freedom, determinism, and so on).

1. Core: metamodel

The metamodel of RoboCert is a key part of its definition. Parts of the metamodel map to various
concrete notations (for instance, sequences map to UML-style sequence diagrams), have a semantics
in terms of various formalisms (chapter 8), and are the subject of well-formedness conditions (for
instance, chapter 3).

This chapter discusses the core metamodel, covering the key concepts of RoboCert. Other
chapters and sections define the metamodels of the sub-notations:

• Chapter 4 discusses the metamodel of sequence diagrams;
• Section 7.1 discusses the metamodel of RoboCert’s features for CSP integration.

1.1 Introduction

Here, we introduce the core metamodel (as well as concepts used in other metamodel chapters).

1.1.1 Example

Below is an example of a RoboCert package with a Targeta (§ 1.3) and multiple Groupas (§ 1.2.2).
This package references the Segway example described in § 0.2.

6 Chapter 1. Core: metamodel� �
// Here is a SpecificationGroup with a Target, a ConstAssignment, two Actors,
// and an Interaction.
// We discuss the precise metamodel and notation for sequences later on.
specification group SM
// All specifications in this package target this RCModule
target = module Segway with
AnglePID::P, AnglePID::D, SpeedPID::P, SpeedPID::I, and RotationPID::D set to 0

actors = { target as T, world as W } // These are available to all Interactions

sequence disableInterrupts_loopTime
actors T and W
any until: T->>W: op disableInterrupts()
loop: duration (between 0 and loopTime units) on T: any until: T->>W: op disableInterrupts()

// Two AssertionGroups: one contains core property assertions; another, sequence properties.
assertion group CoreProps
assertion CP1: target of SM is deadlock free
assertion CP2: target of SM does not terminate

assertion group SeqProps
assertion SP1: SM::disableInterrupts_loopTime holds in the traces model
assertion SP2: SM::disableInterrupts_loopTime holds in the timed model� �

1.1.2 How to read the rest of this chapter
Each section below introduces an aspect of core RoboCert functionality. These sections contain:

• a class diagram representing the Ecore classes, enumerations, and other components that
make up the group being discussed;

• descriptions of the components being shown in the class diagram;
• discussions of how the components relate to counterparts in other notations (such as UML);
• where relevant, examples of the components in terms of the concrete syntaxes of RoboCert.

1.2 Top-level

BasicPackage

name : EString
 imports : Import

GroupCertPackage

OptionallyNamedElement

name : EString

CSPGroup

csp : EString

SpecificationGroup

 target : Target
 messageSets : NamedMessageSet
 actors : Actor
 interactions : Interaction

ConstAssignment

 constants : Variable
 value : Expression

AssertionGroup

 assertions : Assertion

[0..*] groups
[1..1] parent

[0..*] assignments

Figure 1.1: Class diagram for the top of the RoboCert metamodel.

Figure 1.1 is the top-level metamodel diagram for RoboCert.

1.2.1 CertPackage

Each RoboCert script corresponds to a CertPackage, which is a type of RoboStar BasicPackagerc.
The CertPackage has zero or more Groupas (§ 1.2.2), which further organise the specifications and
assertions the package contains.

1.2 Top-level 7

1.2.2 Groupa

� �
specification group Group // a SpecificationGroup
target = module Mod with // ’with’ optional if no assignments
Const1, Const2 set to 5 // ConstAssignment
Const3 set to 6

actors = { target as T, world as W }
message set M1 = universe
sequence Example1
actors T and W
anything until: deadlock on T

assertion group Group2: // an AssertionGroup
assertion Example1: Group::Example1 holds in the traces model� �

Each CertPackage contains an ordered list of zero or more Groupas. These group specifications
and assertions into structured, optionally-named blocks. There are three forms of group in RoboCert
version 0.1: SpecificationGroups, AssertionGroups, and CSPGroups (§ 7.1.1).

SpecificationGroup

A SpecificationGroup is a Groupa that holds specifications. In version 0.1 of RoboCert, these are
invariably Interactions (§ 4.2.2). Each SpecificationGroup has:

• a Targeta, target (§ 1.3);
• zero or more ConstAssignments, assignments (§ 1.2.3);
• zero or more Interactions (§ 4.2.2);
• zero or more auxiliary sequence items (chapter 4):

– Actoras (§ 4.2.1);
– NamedMessageSets (§ 4.5.2).

AssertionGroup

A AssertionGroup is a Groupa subclass that holds Assertions (§ 1.5).

1.2.3 ConstAssignment

� �
Const1 set to 0
Const2, Const3 set to 1� �

A ConstAssignment is an assignment of the value of an Expressionrc to one or more constant
Variablercs left open in the parameterisation of a Targeta. The set of ConstAssignments inside a
SpecificationGroup affect the instantiation of the target of the group, and must not overlap each
other or any constants already instantiated on the target.

8 Chapter 1. Core: metamodel

1.3 Targets

ModuleTarget

 module : RCModule

ControllerTarget

 controller : ControllerDef

CollectionTarget ComponentTarget

InControllerTarget

 controller : ControllerDef

InModuleTarget

 module : RCModule

OperationTarget

 operation : OperationDef

StateMachineTarget

 stateMachine : StateMachineDef

Target

 group : SpecificationGroup

Figure 1.2: Class diagram for the part of the RoboCert metamodel dealing with targets.

A Targeta (Figure 1.2) is a reference to a RoboStar model component (its element). Each, as the
name suggests, is a target of the RoboCert specifications inside a SpecificationGroup (§ 1.2.2). Each
target stores its element as a distinct feature typed to the appropriate RoboChart class.

1.3.1 ComponentTargeta� �
module AModule // ModuleTarget
controller AController // ControllerTarget
state machine AStm // StateMachineTarget
operation AnOp // OperationTarget� �

ComponentTargetas capture specifications over interactions between an opaque component
element and the ‘world’ (environment). Table 1.1 lists the current subclasses of ComponentTargeta.

CollectionTargeta Model class Feature Keyword

ModuleTarget RCModulerc module module

ControllerTarget Controllerrc controller controller

StateMachineTarget StateMachinerc stateMachine state machine

OperationTarget Operationrc operation operation

Table 1.1: ComponentTargetas available in RoboCert version 0.1. For each: its target component
class, the feature referring to that class, and the keyword used in the textual notation.

1.3.2 CollectionTargeta� �
components of module AModule // InModuleTarget
components of controller AController // InCollectionTarget� �

CollectionTargetas target the collection of subcomponents of a model component in terms of
each other and of the component’s world. Table 1.2 lists the current subclasses of CollectionTargeta.

1.4 Values 9

CollectionTargeta Component Keyword Subcomponents
Model class Feature (components of +) Model class

InModuleTarget RCModulerc module module Controllerrc

InControllerTarget Controllerrc controller controller StateMachinerc

Table 1.2: CollectionTargetas available in RoboCert version 0.1. For each: its target component
class, the feature referring to that class, the textual keyword, and the class of the subcomponents.

There are noCollectionTargetas for state machines or operations, as these have no subcomponents
that can be reasoned about as distinct units of behaviour.

1.4 Values

ExpressionValueSpecification

 expr : Expression

ValueSpecification

WildcardValueSpecification

 destination : Variable

Figure 1.3: Class diagram for the part of the RoboCertmetamodel dealing with value specifications.

This section discusses value specifications, and the use of RoboChart expressions by RoboCert.

1.4.1 Use of Expressionrc

RoboCert uses the existing RoboChart expression type, Expressionrc, as its expression type. This
type, in turn, is based on the expression language of the Z notation.

We adopt this existing language to harmonise expression treatment across the RoboStar notations.
This choice overrides the usual tendency in RoboCert to adopt the conventions of similar property
languages (such as UML).

1.4.2 ValueSpecificationa

� �
42 // ExpressionValueSpecification containing integer literal
foo // ExpressionValueSpecification containing constant reference

any into x // WildcardValueSpecification, binding to x
any // WildcardValueSpecification, no binding
anything // WildcardValueSpecification, alternative phrasing� �
A ValueSpecificationa is a pattern that specifies (and possibly binds) a value. There are two types:

• an ExpressionValueSpecification specifies that the value equals that of an Expressionrc expr;
• a WildcardValueSpecification specifies that the value can be any value allowed by the type of
the corresponding parameter.

WildcardValueSpecifications have an optional assignment feature. If present, this is a Variablerc

that receives the actual argument value; precisely which Variablercs are in scope depends on the
context of the value specification.

10 Chapter 1. Core: metamodel

Differences from UML
ValueSpecificationas correspond in intent to the UML concept of the same name ([4, page 69]), but
have a different metamodel. This is mainly to accommodate the existing RoboChart expression
metamodel (which treats literals as expressions, for instance), but also to allow a RoboChart-style
data model where we can capture certain observations into specification-level variables.

1.5 Assertions

Assertion

 group : AssertionGroup

NamedElement

name : EString

Property

negated : EBoolean = false

CoreProperty

type : CorePropertyType = TIMELOCK_FREE
 group : SpecificationGroup

CorePropertyType

TIMELOCK_FREE
DEADLOCK_FREE
DETERMINISM
TERMINATION

SequenceProperty

type : SequencePropertyType = HOLDS
model : SemanticModel = TIMED
 interaction : Interaction

CSPProperty

csp : EString

SemanticModel

TIMED
TRACES

SequencePropertyType

HOLDS
IS_OBSERVED

[1..1] property

Figure 1.4: Class diagram for the part of the RoboCert metamodel dealing with assertions.

Assertions (fig. 1.4) define which properties should be verified, and how the verification should
occur. As with many RoboCert concepts, assertions inhabit a Groupa subclass (AssertionGroup).

1.5.1 AssertionGroup

� �
assertion group
assertion A: SeqGroup::A holds in the timed model

// Assertions at top level implicitly form a singleton unnamed group,
// so this form is equivalent to that above.
assertion A: SeqGroup::A holds in the timed model

// Assertion groups can, themselves, be named.
// This assists with keeping related assertions together.
assertion group Grp
assertion B: SeqGroup::B does not hold in the traces model
assertion C: SeqGroup::C does not hold in the traces model� �

An AssertionGroup is an optionally-named Groupa containing zero or more Assertions.

1.5.2 Assertion and Propertya

� �
assertion A: SeqGroup::A holds in the timed model� �
An Assertion is a single assertion. Each has a name and one of the following types of Propertya:

• CoreProperty (§ 1.5.3).
• SequenceProperty (§ 4.6);
• CSPProperty (§ 7.1);

1.5 Assertions 11

1.5.3 CoreProperty� �
target of Group is deadlock-free
target of Group is not timelock-free
target of Group terminates
target of Group does not terminate� �
A CoreProperty is a Propertya that represents a key property of the Targeta of the enclosing Cert-
Package. The types of property form an enumeration CorePropertyType, of which type is a member.
Table 1.3 describes this enumeration. As with any Propertya, core properties can be negated.

CorePropertyType value Keyword Checks

Positive Negative

DEADLOCK FREE is deadlock free is not deadlock free timed deadlock freedom
TIMELOCK FREE is timelock free is not timelock free timelock freedom

DETERMINISM is deterministic is not deterministic determinism
TERMINATION terminates does not terminate termination

Table 1.3: Core properties available in RoboCert version 0.1.

1.5.4 SemanticModel� �
traces
timed� �

SemanticModel is an enumeration of semantic models, presently used in the definition of Se-
quenceProperty. In RoboCert version 0.1, there are two models:

• TRACES is a lightweight trace inclusion model, where no liveness reasoning is done and time
is only considered as far as being a discrete recurring event in the trace.

• TIMED (the default) is a full timed liveness analysis model, where the target must both accept
and refuse events according to the specification. This model distinguishes between provisional
andmandatory behaviour as well as between successful termination and deadlock, and exposes
target constraints on the world (for instance, deadlines).

2. Core: textual syntax

This chapter discusses the core textual syntax of RoboCert.

2.1 Conventions
We lay out the syntax in a variant of Backus-Naur form, where:

• nonterminals named after metamodel classes represent the syntactic representation of those
classes;

• the suffix ∗ denotes zero or more instances of the preceding element;
• the suffix + denotes one or more instances of the preceding element;
• the suffix ? denotes zero or one instances of the preceding element;
• parentheses group elements together for the purposes of the above;

2.1.1 Terminals
Because RoboCert uses significant whitespace, the symbols→ and← denote special terminals
inducing a mandatory increase (respectively, a decrease) in the indent level.

The following conventional terminals also exist:
• NAME is a single, unqualified Java-style identifier;
• QUALIFIED-NAME is a run of NAMEs conjoined by the namespacing operator ‘::’.

2.2 Top-level
〈CertPackage〉 ::= 〈Groupa〉*

2.2.1 Groupa

〈Groupa〉 ::= 〈CSPGroup〉 | 〈SpecificationGroup〉 | 〈AssertionGroup〉

〈SpecificationGroup〉 ::= ‘specification’ ‘group’ ID→ 〈targetSpec〉 〈specElement〉*←

〈targetSpec〉 ::= ‘target’ ‘=’ 〈Targeta〉 〈instantiation〉?

14 Chapter 2. Core: textual syntax

〈instantiation〉 ::= ‘with’→ 〈ConstAssignment〉+←

〈specElement〉 ::= 〈actorList〉 | 〈Interaction〉 | 〈NamedMessageSet〉

2.2.2 ConstAssignment

This rule set features a pattern common to lists of RoboCert elements: it allows the use of natural
English-style list delimiters for the constant name list. For instance, x; x and z; x, y and z; and
x, y, and z are all valid.

〈ConstAssignment〉 ::= 〈constNames〉 〈assignWords〉 〈Expressionrc〉

〈constNames〉 ::= QUALIFIED_NAME (‘,’ QUALIFIED_NAME)* (‘,’? ‘and’ QUALIFIED_NAME)?

〈assignWords〉 ::= ‘set’ ‘to’ | ‘assigned’

2.3 Targets
〈Targeta〉 ::= 〈ComponentTargeta〉 | ‘components of’ 〈CollectionTargeta〉

〈ComponentTargeta〉 ::= 〈ModuleTarget〉
| 〈ControllerTarget〉
| 〈StateMachineTarget〉
| 〈OperationTarget〉

〈ModuleTarget〉 ::= ‘module’ QUALIFIED_NAME

〈ControllerTarget〉 ::= ‘controller’ QUALIFIED_NAME

〈StateMachineTarget〉 ::= ‘state’ ‘machine’ QUALIFIED_NAME

〈ComponentTargeta〉 ::= 〈InModuleTarget〉 | 〈InControllerTarget〉

〈OperationTarget〉 ::= ‘operation’ QUALIFIED_NAME

〈InModuleTarget〉 ::= ‘module’ QUALIFIED_NAME

〈InControllerTarget〉 ::= ‘controller’ QUALIFIED_NAME

2.4 Values
〈ValueSpecificationa〉 ::= 〈ExpressionValueSpecification〉 | 〈WildcardValueSpecification〉

〈WildcardValueSpecification〉 ::= 〈anyWord〉 〈wildcardCapture〉?

〈anyWord〉 ::= ‘any’ | ‘anything’

〈wildcardCapture〉 ::= ‘into’ NAME

2.5 Assertions 15

2.5 Assertions
Note that the production for CorePropertyType also affects whether the core property is negated.

〈AssertionGroup〉 ::= ‘assertion’ (〈Assertion〉 | 〈fullAssertionGroup〉)

〈fullAssertionGroup〉 ::= ‘group’ NAME→ (‘assertion’ 〈Assertion〉)+←

〈Assertion〉 ::= NAME ‘:’ (〈Propertya〉 |→ 〈Propertya〉 ←)

〈Propertya〉 ::= 〈CoreProperty〉 | 〈CSPProperty〉 | 〈SequenceProperty〉

〈CoreProperty〉 ::= ‘target’ ‘of’ QUALIFIED_NAME 〈CorePropertyType〉

〈CorePropertyType〉 ::= ‘does’ ‘not’? 〈doesCorePropertyType〉
| ‘is’ ‘not’? 〈isCorePropertyType〉
| 〈verbCorePropertyType〉

〈doesCorePropertyType〉 ::= ‘terminate’

〈isCorePropertyType〉 ::= ‘deadlock-free’ | ‘deterministic’ | ‘timelock-free’

〈verbCorePropertyType〉 ::= ‘terminates’

〈SemanticModel〉 ::= ‘traces’ | ‘timed’

3. Core: well-formedness

This section gives well-formedness conditions for the metamodel in chapter 1.

3.1 Introduction
Here, we discuss the common features of this and other well-formedness chapters in the manual.

Each condition has:
• a error code such as XYZ1 (also used in the tooling), which is hierarchical and based on the
target subnotation, class, and feature;

• a textual description of the form ‘an X must Y ’ or ‘an X must not Y ’, where X is the object
on which the condition is evaluated, and Y is a property that must (or must not) hold of X;

• a rationale (in a remark below the description).

3.2 General conditions
These conditions apply across all parts of a RoboCert script. We state them here to avoid repetition
in the class-specific conditions later on.
G1 A NamedElementrc or OptionallyNamedElementa must not have the same fully-qualified

name as another element in the same CertPackage.

R This prevents naming ambiguity and means the tooling need not prevent name clashes.

G2 A NamedElementrc or OptionallyNamedElementa must not have the same fully-qualified
name as a RoboChart NamedElementrc in any RCPackagerc in the same resource set.

R As above, but this is primarily to prevent name clashes at the semantics level.

G3 A feature with a multiplicity requirement must contain a quantity of values that conforms to
the requirement.

18 Chapter 3. Core: well-formedness

R This prevents unexpected situations where the semantics depends on a particular number
of values for a feature.

G4 A cross-reference must refer to a well-formed RoboCert or RoboChart object; RoboChart
objects are subject to the RoboChart well-formedness conditions.

R This makes well-formedness a transitive closure, and lets us rely on the well-formedness
conditions guaranteed by RoboChart.

3.3 Top-level
This section contains well-formedness conditions for the classes defined in § 1.2.

3.3.1 CertPackage (§ 1.2.1)
There are no well-formedness conditions for this class.

3.3.2 Groupa (§ 1.2.2): CG
There are no well-formedness conditions for this class, but there may be well-formedness condi-
tions on its subclasses. In RoboCert version 0.1, there are only well-formedness conditions for
SpecificationGroups.

3.3.3 SpecificationGroup: CGs
Feature assignments: CGsC
CGsC1 The assignments of a SpecificationGroup must not overlap in their sets of constants.

R It is ambiguous as to which assignment should be chosen in the case of an overlap.

Feature messageSets
There are no well-formedness conditions for this feature.

Feature actors: CGsA
CGs1 A SpecificationGroup must not contain two duplicate Actoras.1

R This would complicate the language for no gain in expressivity. Exercising this rule also
forbids ill-formed situations such as a ComponentTargeta group with two TargetActors
or a CollectionTargeta group with no ComponentActors.

CGs2 A SpecificationGroup for a CollectionTargeta2 must not contain a TargetActor.

R Such sequence groups look inside the target, so we cannot reason opaquely about the
target’s behaviour.

CGs3 A SpecificationGroup for a ComponentTargeta3 must not contain a ComponentActor.

R Such sequence groups look outside the target, so we cannot reason directly about
behaviour of the target’s components.

1We consider two Actoras to be duplicates if they are both the same type of Actora and, if ComponentActors, both
reference the same model component.

2These include, for example, InModuleTargets.
3These include, for example, ModuleTargets.

3.4 Targets 19

Feature interactions
There are no well-formedness conditions for this feature.

3.3.4 ConstAssignment (§ 1.2.3): CC
Feature constants: CCC
CCC1 The constants of a ConstAssignment must be unique.

R It is ambiguous as to which assignment should be chosen in the case of an overlap.

CCC2 The constants of a ConstAssignment must have the CONST variable modifier.

R Setting model variables through this mechanism makes no sense.

CCC3 The constants of a ConstAssignment must belong to the parameterisation of the relevant
Targeta.

R Instantiating other constants through this mechanismmakes no sense; said instantiations
would not be used when determining the effective target of any assertions.

Feature value: CCV
CCV1 The value of a ConstAssignment must be type-compatible with all constants.

R Type safety.

CCV2 The value of a ConstAssignment must not reference any variables.

R The only variables in scope here would be other constants in the Targeta instantiation.
Out of an abundance of caution, we forbid these to prevent recursive and mutually
recursive instantiations.

3.4 Targets
In RoboCert version 0.1, there are no well-formedness conditions on targets (§ 1.3).

3.5 Values
This section contains well-formedness conditions for the classes defined in § 1.4.

3.5.1 ValueSpecificationa (§ 1.4.2): CV
There are no well-formedness conditions for this class, but there may be well-formedness conditions
on its subclasses.

3.5.2 ExpressionValueSpecification: CVe
Feature expr: CVeE
CVeE1 Variables with modifier VAR referenced in an ExpressionValueSpecification must belong to

an enclosing Interaction.

R No other variables are visible to such expressions in RoboCert version 0.1. Reading
values from model variables is not yet supported.

20 Chapter 3. Core: well-formedness

CVeE2 Variables with modifier CONST referenced in an ExpressionValueSpecificationmust belong
to the parameterisation of the target of the enclosing SpecificationGroup.

R No other constants are visible to such expressions.

3.5.3 WildcardValueSpecification: CVw
Feature destination: CVeD
CVwD1 The destination of a WildcardValueSpecification must belong to an enclosing Interaction.

R Storing values to model variables is not yet supported, and storing values to constants
makes no sense.

3.6 Assertions
This section contains well-formedness conditions for the classes defined in § 1.4.

3.6.1 Propertya

There are no well-formedness conditions for this class, but there may be well-formedness conditions
on its subclasses. Note that there are no well-formedness conditions for SequenceProperty or
CSPProperty in RoboCert version 0.1.

3.6.2 CoreProperty (§ 1.5.3): CPc
Feature group: CPcG
CPcG1 The group of a CoreProperty must have a target that is a ComponentTargeta.

R Core properties check high-level properties on single components; such checks have
no meaning in CollectionTargetas where the component is not tangible.

II
4 Sequences: metamodel 25
4.1 Introduction
4.2 Interactions
4.3 Interaction fragments
4.4 Occurrences
4.5 Messages
4.6 Assertions

5 Sequences: well-formedness 43
5.1 Sequences
5.2 Fragments
5.3 Occurrences
5.4 Messages
5.5 Assertions

6 Sequences: textual syntax 51
6.1 Interactions
6.2 Fragments
6.3 Occurrences
6.4 Messages
6.5 Assertions

Sequence Notation

23

The sequence notation of RoboCert provides a method of defining the expected interactions
between actors in a robotic model, optionally with time constraints. For instance, sequences may
specify how a RoboChart module uses services offered by a robotic platform. Sequences resemble
UML sequence diagrams.

4. Sequences: metamodel

This chapter discusses the metamodel of RoboCert sequences. This metamodel has two concrete
notations — textual (chapter 6) and graphical (not yet formally specified) —, and a semantics
(chapter 8).

4.1 Introduction
For information on how to read this chapter, see the notes on the top-level metamodel (§ 1.1.2).

4.1.1 Naming and UML compatibility
Where possible, we name concepts after their UML counterparts, or the nearest UML concept. This
is why, for instance, a sequence diagram is an instance of Interaction (§ 4.2.2).

RoboCert sequences are derived from, but not fully compatible with, UML sequence dia-
grams. Nonetheless, where we diverge from UML, we explain and justify the differences. General
differences include:

• The UML concept of ‘named elements’ is referred to as an OptionallyNamedElementa here,
to avoid clashing with the RoboChart NamedElementrc.

4.1.2 Ordering and timing
Unless modified using fragments (§ 4.3), communications on RoboCert lifelines are strictly ordered
with respect to each other (but not necessarily those on other lifelines) and permit no intervening
communications. This reflects the view of sequence diagrams as representations of traces of the
system under test, and is consistent with the canonical UML semantics [4, 8].

RoboCert sequences are, by default, explicit as to which actions occur, but implicit as to when.
RoboCert adopts the RoboChart discrete-time model, where time is measured in time units and
events, operation calls, and primitive data operations (assignments, communication, and so on) are
instantaneous. In this light, Occurrenceas (§ 4.4) represent instants in time where something occurs,
preceded by a time interval that defaults to being unbounded. To constrain the flow of time in a
sequence, use DeadlineFragments (§ 4.3.3).

26 Chapter 4. Sequences: metamodel

4.1.3 Temperature

When performing liveness reasoning, we must distinguish between parts of a sequence where the
model has control over when things can occur, and parts where it must be ready to engage in any
possibility it offers. For instance, an AltFragment (§ 4.3.9) could represent either a model-level
choice of multiple possible implementations (a ‘provisional’ alternative), or a control flow where
the environment can influence the model behaviour by providing different inputs (a ‘mandatory’
alternative). These two become distinct for liveness purposes as the former permits the model to
refuse to engage in unimplemented alternatives.

UML does not inherently have a way to distinguish the two cases above, though variants of
UML such as STAIRS [5] extend it with constructs such as mandatory alternatives. Our approach is
to use the Live Sequence Charts [2] notion of a ‘temperature’ modality: certain parts of a sequence
can be ‘hot’ or ‘cold’ In RoboCert, this modality affects liveness reasoning as follows:

• Cold elements permit the model to decide when, if ever, it is ready to engage in that element.
For instance, cold AltFragments permit the element to leave certain branches unimplemented;
cold MessageOccurrences can be refused indefinitely by the model; and so on.

• Hot elements require the model to be available, at any point in time, to engage in any aspect
of that element. For instance, hot AltFragments insist that the model be ready for any of the
branches to occur; hot MessageOccurrences specifying incoming EventTopics require that
the model be ready to engage in the communication at any moment; and so on.

The ‘cold’ modality is the default, is a weaker obligation on the model, and is only different
from the ‘hot’ modality when performing liveness reasoning. As such, sequences should usually
start with all elements marked ‘cold’ with a gradual transition to ‘hot’ modalities where needed.

We use a temperature modality for various reasons. The main reason is its existing use in
LSC. Another is that it captures liveness dichotomies effectively over various distinct parts of the
RoboCert metamodel. A third is that the concept of a ‘hot’ element is a good intuition to the
liveness behaviour: just as we reflexively drop hot items quickly, so must RoboChart models be
ready to effect a hot sequence element at any time, including immediately.

4.2 Interactions

NamedElement

name : EString

Actor

 group : SpecificationGroup

TargetActorWorld

Interaction

 group : SpecificationGroup
 variables : VariableList
 fragments : InteractionFragment

ComponentActor

 node : ConnectionNode

[2..*] actors

Figure 4.1: Class diagram for the part of the RoboCert metamodel dealing with sequences.

The sequence notation (fig. 4.1) consists of sequences (formally termed ‘interactions’) and related
items (such as message sets and actors).

4.2 Interactions 27

4.2.1 Actora� �
target // TargetActor
component Stm1 // ComponentActor
world // World� �
Actoras capture sequence communication participants. A SpecificationGroup defines a set of Actoras,
and each Interaction (§ 4.2.2) maps a subset of those actors to lifelines. There are three types:

• a TargetActor is an Actora that represents aComponentTargeta in a sequence. It has no features;
• a ComponentActor is an Actora that represents a subcomponent (that is, a ConnectionNoderc)
of a CollectionTargeta;

• aWorld is an Actora that represents the ‘world’ in a sequence: the context into which the target
is placed. For instance, the world of a ModuleTarget is the world (in the RoboWorld sense), as
viewed through the services provided by the robotic platform; the world of a ControllerTarget
is the robotic platform plus any other controllers connected to the Controllerrc; and so on.

R Unlike most actors, a World does not semantically or notationally induce a lifeline. This is
because the World is ‘outside’ the component constrained by the sequence, and our ability
to reason about its behaviour is correspondingly limited. Instead, Worlds behave like UML
formal gates: graphically, the world corresponds to the right edge of a diagram.

4.2.2 Interaction

� �
sequence Example
actors M and W // lifelines
var x: int // variables
anything until: deadlock on M // body� �

〈〈 target 〉〉
M

sd Example

any(∗) until

An Interaction represents a sequence diagram. It is a NamedElementrc that contains:
• an unordered list actors of Actoras, representing lifelines and gates in the diagram and forming
a subset of actors from the parent SpecificationGroup;

• a VariableListrc variables, which declares variables to be used by WildcardValueSpecifications
and Expressionrcs in the diagram;

• the body of the interaction, an ordered list of InteractionFragmentas (§ 4.3).
The example above shows the most permissive Interaction possible: a diagram that allows the

system to do anything (and accept any communications from the robotic platform) until termination.

Differences from UML
An Interaction interleaves Occurrenceas from all lifelines into one vertical, lexically ordered flow,
with nesting from CombinedFragmentas (§ 4.3). This differs from UML, where the containment
of OccurrenceFragments in an Interaction is unordered, and a separate ‘events’ relation orders
OccurrenceFragments into individual lifelines.

We use the vertical flow to maximise legibility for Interactions in the textual notation, especially
in the case where there is no potential for parallelism between lifelines. A consequence is that

28 Chapter 4. Sequences: metamodel

this approach complicates the slicing of the diagram into lifelines later on, as well as expressing
concepts such as message overtaking.

The textual ordering of Occurrenceas does not necessarily correspond to a total ordering of their
effect; like UML, there is no implicit synchronisation between lifelines. Figure 4.3 is an example
using where the textual ordering overapproximates the actual ordering.

� �
sequence noOrd
actors A, B, C, and D
A->>B: event X
C->>D: event Y� �

〈〈component A 〉〉
A

〈〈component B 〉〉
B

〈〈component C 〉〉
C

〈〈component D 〉〉
D

sd noOrd

event X

event Y

Figure 4.3: X and Y are unordered, as they are on disjoint lifelines with no synchronisation.

Another difference from UML is the inclusion of variable declarations at the top level of
Interactions. These are necessary to allow capturing of dataflow properties, such as the value from
one event being propagated to another event. Variable declaration and usage follows the conventions
of RoboChart, to simplify variable use for existing RoboChart modellers.

4.3 Interaction fragments 29

4.3 Interaction fragments

LoopFragment

BranchFragment

AltFragment

ParFragment

BlockFragment

OccurrenceFragment

 occurrence : Occurrence

UntilFragment

 intraMessages : MessageSet

InteractionFragment

CombinedFragment

OptionallyNamedElement

name : EString

OptFragment

InteractionOperand

ElseGuard

EmptyGuard

ExprGuard

 expr : Expression

Guard

XAltFragment

DiscreteBound

 lower : Expression
 upper : Expression

DeadlineFragment

 actor : Actor
 units : Expression

[1..1] body

[2..*] branches

[0..*] fragments

[1..1] parent

[1..1] guard

[0..1] bound

Figure 4.4: Class diagram for the part of the RoboCert metamodel dealing with fragments.

Interaction fragments (fig. 4.4), or ‘fragments’ for short, are elements of InteractionFragmenta. They
represent communications and control flow inside an Interaction.

Combined fragments

Some InteractionFragmentas contain sub-sequences of further InteractionFragmentas (both UML
and RoboCert refer to these as InteractionOperands; see § 4.3.12). These form subclasses of
CombinedFragmenta, named by analogy to the UML concept of combined fragments.

Unlike UML, where combined fragments directly contain an ‘interaction operator’ followed
by zero or more ‘interaction operands’, we organise CombinedFragmenta into a subclass hierarchy
based first on the number of expected operands and then on the operator. The first level is as follows:

• BlockFragmentas (§ 4.3.2) represent control flow over a single InteractionOperand;
• BranchFragmentas (§ 4.3.8) are combining operators over ≥ 2 InteractionOperands.

We do this to simplify both implementation (by making the metamodel follow commonalities in
how we handle the fragments) and well-formedness (by ensuring the number of expected operands
follows from the metamodel multiplicity).

30 Chapter 4. Sequences: metamodel

4.3.1 OccurrenceFragment

� �
M->>W: op O()
W->>M: event E
M->>W: event E (hot)� �

〈〈 target 〉〉
M

op O

event E

event E

An OccurrenceFragment lifts an Occurrencea (§ 4.4) to a fragment.

R By default, any amount of time (including no time at all) may pass between the start of
a OccurrenceFragment and the effect of its enclosed Occurrencea. Use DeadlineFragments
(§ 4.3.3) to constrain this.

4.3.2 BlockFragmenta

A BlockFragmenta is a OccurrenceFragment that contains a InteractionOperand, body, and performs
some form of control-flow lifting over it. There are four types of BlockFragmenta:

• DeadlineFragment (§ 4.3.3);
• LoopFragment (§ 4.3.4);
• OptFragment (§ 4.3.5);
• UntilFragment (§ 4.3.6).

4.3.3 DeadlineFragment

� �
deadline (3 units) on M // ’units’ optional
M->>W: op O1()

end� �
〈〈 target 〉〉

M

{0..3} op O1()

A DeadlineFragment places an upper bound on the amount of time that a InteractionOperand takes
to complete on a given Actora. A required Expressionrc, units, effects this constraint in terms of the
number of time units passing from the perspective of the Actora actor inside the operand. Other
Actoras can participate in the operand, but the constraint does not directly affect them.

R To specify that the actions must occur immediately, set units to 0.

4.3 Interaction fragments 31

4.3.4 LoopFragment

� �
// No bound
loop L1
[always] // this can be omitted
M->>W: op O1()

end

// exact bound
loop (4 times) L2
M->>W: op O2()

end

// lower bound
loop (at least 5 times) L3
M->>W: op O3()

end

// range bound
loop (between 3 and 6 times) L4
M->>W: op O4()

end� �

〈〈 target 〉〉
M

op O1()loop L1

op O2()loop(4) L2

op O3()loop(5, ∗) L3

op O4()loop(3, 6) L4

A LoopFragment is a loop over a InteractionOperand. The number of times a LoopFragment will
iterate (unless deadlocked1) depends on its attached DiscreteBound (§ 4.3.7), if any; if the bound is
absent, the loop is infinite.

R Expressionrcs inside any loop DiscreteBound are evaluated once, before executing the body.

4.3.5 OptFragment

� �
// target can call O1, but doesn’t have to
opt P1
M->>W: op O1()

end

opt P2: M->>W: op O2() // one-liner syntax� �

〈〈 target 〉〉
M

op O1()

op O2()

opt P1

opt P2

An OptFragment marks its body as optional: either the whole body occurs, or it does not. The target
is allowed to refuse to perform the body; as in UML, an OptFragment is semantically equivalent to
an AltFragment with two empty-guarded branches (one containing body and one containing nothing).

Despite the equivalence above, we justify retaining OptFragment in RoboCert (when languages
such as Property Sequence Charts [1] remove it) as it more clearly and succinctly captures the notion
of optionality than the AltFragment construction; also, removing it would diverge from UML.

Differences from UML
There are no differences between OptFragment and UML opt.

1Future work will add the ability to break out of loops prematurely.

32 Chapter 4. Sequences: metamodel

4.3.6 UntilFragment

� �
any in set MS until: M->>W: event E

any except op O() until: W->>M: event E
// = ’in universe except op O()’

any until: M->>W: event E
// = ’in universe’

any until: M->>W: event E (hot)� �

〈〈 target 〉〉
M

event Eany(MS) until

event Eany(∗ \ {op O()}) until

event Eany(∗) until

event Eany(∗) until

An UntilFragment is a subclass of OccurrenceFragment that suspends ordinary Occurrenceas on
all lifelines. Instead, the diagram permits the exchange of arbitrary messages from a specified set
until an Occurrencea within the enclosed InteractionOperand takes effect.

Any InteractionOperand may be nested inside the UntilFragment, except if it begins with another
UntilFragment2. The sequence behaves as a loop over the messages in the MessageSeta intraMes-
sages, except for messages within the set of potential initial Messages reachable from the first
InteractionFragmenta (if any) of the InteractionOperand. These are:

• for OccurrenceFragments carrying a MessageOccurrence, the Message;
• for BlockFragmentas, the initial Messages of the subsequence of the block;
• for BranchFragmentas, the union of the initial Messages of the subsequences of each branch
(regardless of their Guardas);

• for everything else, the empty set.
UntilFragments induce a synchronisation on lifelines entering the fragment (the exchange of

intraMessages does not start until all lifelines reach the top of the UntilFragment) and another
synchronisation as soon as theOccurrencea takes effect. The rest of the InteractionOperand proceeds
with the usual ordering across lifelines.

Differences from UML
UntilFragments do not correspond to any UML combined fragment. Instead, they are a UML
extension based on both the intraMSG constraints of Property Sequence Chart [1] and the 〈〈UNTIL 〉〉
stereotype of Lindoso et al. [7].

Example: prefix sequence
Despite being an extension to UML, UntilFragments lets us succinctly capture various common
specification patterns. We outline these in several examples.

Sequences in RoboCert are total: they capture the behaviour of a robotic component from start
to finish. This is in accordance with the standard UML semantics. However, it is common to want to
only specify some prefix of the intended behaviour. This can be captured by following the intended
prefix with an UntilFragment enclosing either deadlock (which forbids termination) or an indefinite
wait (which permits it)3.

2This restriction serves only to make the set of initial messages enumerable, which is an implementation concern and
may be relaxed in future revisions.

3This encoding does not work with ‘is observed’ assertions, as the semantics is that every possible selection of actions
that can complete the sequence must be observable.

4.3 Interaction fragments 33

� �
// The first thing the Segway does is
// call disableInterrupts()
sequence initDisableInterrupts
actors M and W
M->>W: op disableInterrupts()
any until: deadlock on M� �

〈〈 target 〉〉
M

sd initDisableInterrupts

op disableInterrupts()

any(∗) until

Example: suffix sequences
Similarly, anUntilFragment at the start of the sequence lets us encode certain types of suffix sequence.
This is similar to the concept of pre-charts in Live Sequence Charts [3]: preceding the main sequence
by a period where the sequence is ‘inactive’ and activated by an Occurrencea.

� �
// After each call of disableInterrupts(),
// loopTime time units pass before the next
sequence disableInterruptsLoopTime
actors M and W
any until: M->>W: op disableInterrupts()
loop
duration (between 0 and loopTime) on M
any until
M->>W: op disableInterrupts()

end
end

end� �

〈〈 target 〉〉
M

sd disableInterruptsLoopTime

loop

any(∗) until

any(∗) until

op disableInterrupts()

{0..loopTime} op disableInterrupts()

Do anything for a certain amount of time
The combination of UntilFragments andWaitOccurrences (§ 4.4.2) lets us specify the act of blocking
all lifelines for an amount of time units, but simultaneously permitting intraMessages.

� �
// We don’t have an example for the
// Segway here, yet
sequence doAnythingForThreeUnits
actors M and W
any until: after 3 units on M� �

〈〈 target 〉〉
M

sd doAnythingForThreeUnits

wait(3)any(∗) until

Use with AltFragment

By nesting an AltFragment (§ 4.3.9) inside an UntilFragment, we can capture the concept of waiting
for one of multiple different Occurrenceas. This example constrains the Segway such that, every
time a setLeftMotorSpeed or setRightMotorSpeed operation occurs, its argument will be 0:

34 Chapter 4. Sequences: metamodel� �
// When the PID constants are set to 0,
// the values set by setLeftMotorSpeed and
// setRightMotorSpeed() are 0.
message set MS =
{ M->>W: op setLeftMotorSpeed(any)
, M->>W: op setRightMotorSpeed(any) }

sequence noPIDs
actors M and W
loop
any except MS until
xalt: M->>W: op setLeftMotorSpeed(0)
else: M->>W: op setRightMotorSpeed(0)
end

end
end� �

〈〈 target 〉〉
M

sd noPIDs

any(∗ \MS) until xalt P1 op setLeftMotorSpeed(0)

op setRightMotorSpeed(0)

4.3.7 DiscreteBound

� �
6 // exactly 6
at least 5 // lower bound is 5
[2, 4] // 2 to 4 inclusive
(3, 5) // 3 to 5 exclusive (so, 4)� �

A DiscreteBound defines a potentially-open set of natural numbers, representing a constraint
on the number of something (such as time loop iterations in LoopFragments). Each DiscreteBound
contains a Expressionrc count, which is either a natural or a range expression over naturals. In the
former case, a Boolean lower determines whether the resulting count is an exact bound or a lower
bound.

R If setting an upper bound only, use a range expression with a lower bound of 0.

Differences from UML

We adopt the RoboChart concept of range expressions (with an extension to handle lower bounds)
as the uniform way of handling ranges throughout RoboCert. In doing so, we break cosmetically
from UML in loop bounds, where the lower and upper bounds of a doubly bound loop are separate
expressions.

4.3.8 BranchFragmenta

A BranchFragmenta contains two or more InteractionOperands, and represents a form of combining
operator upon them. There are three types of BranchFragmenta:

• AltFragment (§ 4.3.9);
• XAltFragment (§ 4.3.10);
• ParFragment (§ 4.3.11).
There are several well-formedness conditions that govern which combinations of guards are

allowed in a BranchFragmenta (see § 5.2.10).

4.3 Interaction fragments 35

4.3.9 AltFragment

� �
// target may be capable of one or both ops
alt: M->>W: op O1()
else: M->>W: op O2()
end� �

〈〈 target 〉〉
M

op O1()

op O2()

alt P1

An AltFragment, or provisional alternative, is a BranchFragmenta representing a decision point
where the model can behave as precisely one of the branches provided. In a provisional alternative,
the model may arbitrarily choose which branch to take, and refuse to accommodate other branches.
This means that the sequence lets the model choose which parts of the alternative to implement.

If there are no branches available with viable guards, the semantics is deadlock.

Differences from UML
This fragment corresponds to its UML counterpart. More specifically, it corresponds to the STAIRS
view of provisional alternatives, with XAltFragment representing mandatory alternatives.

4.3.10 XAltFragment

� �
// target must be capable of both of these
xalt: M->>W: op O1()
else: M->>W: op O2()
end� �

〈〈 target 〉〉
M

op O1()

op O2()

alt P1

An XAltFragment, or mandatory alternative, is a BranchFragmenta representing a decision point
where the model must be able to behave as any of the given branches, provided that their guards
evaluate to true.

XAltFragment is a stronger form of AltFragment where the choice between branches may be
taken by the environment rather than the model. This distinction only arises when using the TIMED
semantic model; otherwise, AltFragment is equivalent and sufficient.

As with AltFragments, the semantics of an XAltFragment where no branches have guards evalu-
ating to true is deadlock.

Differences from UML
This fragment corresponds to the similarly-named fragment in the STAIRS extension of UML
sequence diagrams.

Encoding conditionals
A key purpose of XAltFragments is to encode conditionality. As with UML, XAltFragments are a more
general (and low-level) construct than if-then-else conditionals found in programming languages;

36 Chapter 4. Sequences: metamodel

encoding such conditionals requires the combination of a hot4 XAltFragment and Guardas (4.3.8):

� �
xalt [x == 3]: M->>W: op O1()
else [otherwise]: M->>W: op O2()
end� �

〈〈 target 〉〉
M

op O1()

op O2()

xalt P1[x == 3]

[otherwise]

4.3.11 ParFragment

� �
par M->>W: op O1()
and M->>W: op O2()
end� �

〈〈 target 〉〉
M

op O1()

op O2()

par P1

An ParFragment is a BranchFragmenta that represents an interleaving parallel composition of
the branches offered, with MessageOccurrences being the atomic actions.

The motivation for this fragment is the same as in UML. While lifelines implicitly run in parallel
with each other (horizontally), there exists a (vertical) ordering over actions within lifelines, as well
as an implicit ordering effect when communications synchronise lifelines. ParFragment relaxes this
default ordering by allowing InteractionOperands to interleave irrespective of lifelines involved.

Differences from UML

There are no differences from the UML concept of par.

R Implementing the strict operator, which has the converse effect of implementing a total
operator, is left to future work. The synchronising nature of UntilFragment may be used to
perform some of the same effect.

4The use of mandatory alternative here serves to ensure that both branches are live; otherwise, the model could
implement only one and deadlock on reaching the other.

4.4 Occurrences 37

4.3.12 InteractionOperand� �
// these are equivalent;
// here, everything after ’until’ is
// an InteractionOperand
anything until
[always] M->>W: op O1()

end
anything until
M->>W: op O1() // elided [always]

end
// one-liner syntax
anything until: [always] M->>W: op O1()
anything until: M->>W: op O1()� �

〈〈 target 〉〉
M

op O1()any(∗) until

An InteractionOperand is a slice of an Interaction that forms an operand to a CombinedFragmenta

(§ 4.3). Like an Interaction, a InteractionOperand contains an ordered list of InteractionFragmentas.
As in UML, InteractionOperands also contain Guardas (§ 4.3.13), which guard entry to the operand
according to the semantics of the enclosing CombinedFragmenta.

4.3.13 Guarda� �
[always] // EmptyGuard (does not appear in graphical notation)
[a > b] // ExprGuard
[otherwise] // ElseGuard� �

A Guarda places a constraint on the execution of an InteractionOperand. While the precise
semantics of a Guarda depends on its parent CombinedFragmenta (§ 4.3), the usual reading is that
any Actora reaching a Guarda that evaluates to false deadlocks. There are three types of Guarda:

• EmptyGuard, which is always true;
• ExprGuard, which is true iff. its expression evaluates to true;
• ElseGuard, which is true iff. all other guards in the same BranchFragmenta evaluate to false.

4.4 Occurrences

MessageOccurrence

temperature : Temperature = COLD
 message : Message

DeadlockOccurrence

LifelineOccurrence

 actor : Actor

Occurrence

 fragment : OccurrenceFragment

WaitOccurrence

 units : Expression

Temperature

COLD
HOT

Figure 4.19: Class diagram for the part of the RoboCert metamodel dealing with occurrences.

Occurrences (fig. 4.19) represent points in time on a sequence when something is expected to occur.
There are three types of occurrence, each of which is a subclass of Occurrencea:

• MessageOccurrence (§ 4.4.1): a message is expected to occur;
• WaitOccurrence (§ 4.4.2): a delay is expected to occur;

38 Chapter 4. Sequences: metamodel

• DeadlockOccurrence (§ 4.4.3): a deadlock is expected to occur.

Of these, WaitOccurrence and DeadlockOccurrence are subclasses of LifelineOccurrence. This
is an abstract class representing occurrences that take effect on precisely one lifeline.

Differences from UML

Unlike UML, there is no concept of an execution specification. This is because lifelines repre-
sent RoboChart components that begin execution simultaneously and remain executing unless
terminated, and Messages do not themselves start or end processes or functions on the lifelines.

4.4.1 MessageOccurrence

� �
M->>W: op O1()� �

〈〈 target 〉〉
M

op O1()

An MessageOccurrence lifts a Message (§ 4.5) to an Occurrencea.

Temperature

By default, a MessageOccurrence is ‘cold’: the model can refuse to engage in the occurrence for an
arbitrary amount of time, but, once it does, the sequence will progress downwards. For instance,
the occurrence W->>T: event E is an MessageOccurrence (§ 4.4.1) specifying that when the Targeta

accepts event E from the World, the sequence will progress; the target may refuse to accept E for
an arbitrary amount of time. Similarly, W->>T: any until: event E is an UntilFragment (§ 5.2.8) that
allows the Targeta to engage in any communications with the World until it accepts E, but does not
require that said acceptance is readily available.

Setting the temperature of aMessageOccurrence to HOT specifies instead that the modelmust be
ready to participate in the communication as soon as it becomes available (or at any time afterwards,
if not otherwise constrained). For instance, W->>T: event E (hot) specifies that the target must be
willing to accept E immediately; any until: W->>T: event E (hot) allows the Targeta to engage in any
communications with the World but requires that it is always ready to accept E; this is a strong
requirement, hence why it is not the default meaning.

Differences from UML

Unlike UML, where the send and receive ends of a message each form an occurrence on their
respective lifelines, the whole message here forms one Occurrencea. This is related to the flat
structuring of InteractionFragmentas across all lifelines discussed in § 4.2.2. Separating the message
ends would spread the message into three parts, at least two of which would still inhabit the
Interaction, and induce undue complexity in the textual notation.

4.4 Occurrences 39

4.4.2 WaitOccurrence

� �
after 3 units on M
after [3, 5] units on M
after any units on M� �

〈〈 target 〉〉
M

wait(3)

wait([3, 5])

wait(any)

AWaitOccurrence captures the RoboChart concept of wait statements, which induce a delay for
an amount of time. In RoboCert, this amount is a ValueSpecificationa units, applied to one Actora.
A key use for WaitOccurrences is to allow the specification of time budgets.

As in RoboChart, if units is a ExpressionValueSpecification over a RangeExprc, the wait will be
nondeterministic over the range of possible time units supplied; otherwise, it will be deterministic
over the value of the expression.

If units is anWildcardValueSpecification, the model is expected to wait an indeterminate amount.
This case is useful when using UntilFragment (§ 4.3.6), as it captures the concept of accepting
messages from an intraMessages set indefinitely without deadlocking. There is presently no way to
capture the amount of time waited into a Variablerc.

As a LifelineOccurrence, a WaitOccurrence has a actor on which we expect the wait to occur.
This must be provided if, and only if, the occurrence is not inside a UntilFragment.

R The instant in time at which the occurrence takes effect is after the number of units. This has a
subtle effect on how UntilFragments affect aWaitOccurrence: the fragment remains active until
the wait has concluded. For instance, a wait for 3 units allows any communication allowed by
the fragment to occur until the named actor has been inside the fragment for 3 units.

Differences from UML
WaitOccurrence does not directly correspond to a UML feature. We consider the resulting UML
extension to be justified, as waits are a key RoboChart timing concept. To compensate, we encode
WaitOccurrence in the graphical notation as if it were a gate message sending ‘wait’ to the World.

4.4.3 DeadlockOccurrence

� �
deadlock on X� �

〈〈 target 〉〉
M

A DeadlockOccurrence captures a deadlock scenario in a lifeline or UntilFragment. This is where
part of the model no longer makes any progress, but has not successfully terminated.

Outside an UntilFragment, the DeadlockOccurrence takes a actor on which the deadlock is
expected to happen. Inside an UntilFragment, there is no distinction between the actions of individual
Actoras, and so the DeadlockOccurrence may omit its actor.

40 Chapter 4. Sequences: metamodel

Differences from UML
DeadlockOccurrence s are an extension of UML to handle part of the semantics of RoboChart. The
closest concept in UML, and the source of the graphical notation, is UML destruction messages;
these represent the end of the life of an object.

4.5 Messages

EventTopic

 efrom : Event
 eto : Event

ExtensionalMessageSet

MessageSet

Message

 arguments : ValueSpecification
 from : Actor
 to : Actor

MessageTopic

OperationTopic

 operation : OperationSig

RefMessageSet

 set : NamedMessageSet

UniverseMessageSet BinaryMessageSet

operator : BinarySetOperator = UNION

BinarySetOperator

UNION
INTERSECTION
DIFFERENCE

[1..1] message

[1..1] topic

[1..1] lhs

[1..1] rhs
[0..*] messages

Figure 4.23: Class diagram for the part of the RoboCert metamodel dealing with messages.

Messages (fig. 4.23 capture RoboChart event and operation communications. In sequences, they
appear within MessageSetas and MessageOccurrences.

4.5.1 MessageSeta� �
universe // UniverseMessageSet
{ op O1(), op O2() } // ExtensionalMessageSet
op O1() // singleton ExtensionalMessageSet
set S // RefMessageSet
set X or set Y // UNION BinaryMessageSet
set X and set Y // INTER BinaryMessageSet
set X except set Y // DIFF BinaryMessageSet� �
A MessageSeta expresses a set of Messages. There are four types:

• a UniverseMessageSet represents the universal set containing all possible messages;
• an ExtensionalMessageSet is a set (expressed as an unordered list) of zero or more Messages
(§ 4.5.3);

• a RefMessageSet refers to a NamedMessageSet attached to the sequence group;
• a BinaryMessageSet is a binary operator over two other MessageSetas (operators are union,
intersection, and difference).

4.5.2 NamedMessageSet� �
message set S = { op O1(), op O2 }� �

4.5 Messages 41

A NamedMessageSet attaches a name to a MessageSeta, so that it can be placed inside a Specifica-
tionGroup and referenced using RefMessageSets.

4.5.3 Message

� �
// outbound Message with OperationTopic
M->>W: op O1()

// inbound Message with EventTopic
W->>M: event E� �

〈〈 target 〉〉
M

op O1()

event E

A Message is a specification on the types of communication that can happen before or during an
action. Each Message contains:

• the MessageTopica (§ 4.5.4) giving the type of communication that the spec is capturing;
• the ValueSpecificationas (§ 1.4.2) supplied to the communication;
• two Actoras representing the endpoints of the connection: from and to.

Differences from UML
Messages broadly reflect the analogous concept in UML, but with adaptations to introduce the
specific taxonomy of communications available in RoboChart (eg, MessageTopicas). We do this
to enable formal analysis of the communications of a model with respect to the Messages in its
sequence diagrams.

We do not have reply Messages. This is because they do not fit in the RoboChart paradigm,
except for in the case of calling controller operations (in which case, the RoboCert encoding is to
inline the communications of the operation into the caller lifeline).

We do not have a distinction between synchronous and asynchronous Messages. This is a point
that will be revisited in future work, as RoboChart models do have this distinction.

4.5.4 MessageTopica

� �
operation O1() // OperationTopic
op O1() // shorthand

event E // EventTopic, eFrom=E, eTo undefined (effectively E)
event E1/E2 // EventTopic, eFrom=E1, eTo=E2� �
MessageTopicas identify the form of communication in a Message. They do not directly identify
the concrete RoboChart model part responsible for the communication, but specify it in a way that
maps onto the existing UML concept of a message, and which is understandable to the user without
in-depth knowledge of the naming conventions of the target model. Resolving MessageTopicas into
model elements therefore requires some analysis of the model. There are two types of topic:

• an OperationTopic identifies a RoboChart operation by its OperationSigrc;
• an EventTopic identifies a Connectionrc by its endpoint Eventrcs.
As Connectionrcs do not have a name in RoboChart, an EventTopic is an indirect specification

of its intended Connectionrc. Each contains a mandatory event efrom (the event on the ‘from’ Actora)

42 Chapter 4. Sequences: metamodel

and an optional event eto (the event on the ‘to’ Actora). Each well-formed EventTopic corresponds
to a Connectionrc as follows:5

• the EventTopic’s parent Message connects two Actoras whose elements correspond to the
ConnectionNodercs connected by the Connectionrc;

• the efrom of the EventTopic corresponds to the efrom of the Connectionrc if it is unidirectional,
or either the efrom or eto if bidirectional;

• the eto of the EventTopic, if specified, corresponds to the other Connectionrc event;
• the eto can be left unspecified, but only if both Connectionrc events share the same name.

R For the purpose of supplying ValueSpecificationas to a Message, an EventTopic has 0 param-
eters if its underlying Eventrcs are untyped, and 1 parameter otherwise (with the parameter
taking that type).

4.6 Assertions
The RoboCert sequence language introduces properties into the RoboCert assertions language that
allow verification over sequences.

4.6.1 SequenceProperty� �
assertion A: SequenceName holds // positive ’holds’ SequenceAssertion
assertion B: SequenceName does not hold // negative ’holds’ SequenceAssertion
assertion C: SequenceName is observed // positive ’is observed’ SequenceAssertion
assertion D: SequenceName is not observed // negative ’is observed’ SequenceAssertion� �
A SequenceProperty is a Propertya about a particular Interaction with respect to its Targeta.

The specific sequence assertion type comes from the SequenceAssertionType: either ‘sequence
holds on target’ (refinement), or ‘sequence is observed on target’ (reverse refinement). The assertion
can be negated. The choice of SemanticModel (§ 1.5.4) affects how we check the assertion.

5See § 5.4.4 for the formal condition definitions.

5. Sequences: well-formedness

This section gives well-formedness conditions for the metamodel in chapter 4. See § 3.1 for an
introduction to the conventions used in well-formedness condition chapters.

5.1 Sequences
This section contains well-formedness conditions for the classes defined in § 4.2.

5.1.1 Actora (§ 4.2.1)
There are no well-formedness conditions for this class, but there may be well-formedness conditions
on its subclasses.

5.1.2 TargetActor
There are no well-formedness conditions for this class.

5.1.3 ComponentActor: SAc
Feature component: SAcC
SAcC1 The component of a ComponentActor must name a model component contained within the

subcomponents of the Targeta its enclosing CertPackage.

R With SG1 ensuring that the Targeta does indeed have subcomponents, this ensures that
actors specify the behaviour of subcomponents inside the element of the Targeta.

5.1.4 World
There are no well-formedness conditions for this class.

5.1.5 Interaction (§ 4.2.2)
Feature group
There are no well-formedness conditions for this feature.

44 Chapter 5. Sequences: well-formedness

Feature variables: SIV
SIV1 The variables of an Interaction must have the VAR modifier.

R Constants make no sense; these variables exist to produce a memory for the interaction.

Feature actors: SIA
SIA1 The actors of an Interaction must be distinct.

R Having more than one copy of each actor introduces needless redundancy and ambiguity.

SIA2 The actors of an Interaction must each be present on the enclosing SpecificationGroup.

R This prevents message sets and other group-defined elements from disagreeing with
the sequence on the definition of Actoras.

Feature fragments
There are no well-formedness conditions for this feature.

5.2 Fragments
This section contains well-formedness conditions for the classes defined in § 4.3.

5.2.1 InteractionFragmenta (§ 4.3)
There are no well-formedness conditions for this class, but there may be well-formedness conditions
on its subclasses.

5.2.2 OccurrenceFragment (§ 4.3.1)
There are no well-formedness conditions for this class.

5.2.3 CombinedFragmenta

There are no well-formedness conditions for this class, but there may be well-formedness conditions
on its subclasses.

5.2.4 BlockFragmenta (§ 4.3.2): SBl
Feature body: SBlB
SBlB1 The body of a BlockFragmenta must not have an ElseGuard.

R ElseGuards are the negation of the disjunction of all other guards, so the guard would
always be false.

5.2.5 DeadlineFragment (§ 4.3.3): SD
Feature actor: SDA
SDA1 The actor of a DeadlineFragment must not be a World.

R The semantics of the fragment is a constraint over the actions on the Actora’s lifeline; a
World has no lifeline in the semantics, and so such a constraint would have no meaning.

Feature units
There are no well-formedness conditions for this feature.

5.2 Fragments 45

5.2.6 LoopFragment (§ 4.3.4)
There are no well-formedness conditions for this class.

5.2.7 OptFragment (§ 4.3.5)
There are no well-formedness conditions for this class.

5.2.8 UntilFragment (§ 4.3.6: SU)
Feature intraMessages
There are no well-formedness conditions for this feature.

Feature body: SUB
SDbL1 The body of a UntilFragment must not contain another UntilFragment.

R The body of such a fragment is intended to be the trigger condition for exiting the ‘any
in set’ behaviour of the fragment. Having another UntilFragment in such a trigger does
not make sense.

5.2.9 DiscreteBound (§ 4.3.7): SDb
Feature lower: SDbL
SDbL1 The lower of a DiscreteBound must be a natural, if present.

R Type safety. Other types make no sense here, as this construct represents the number
of times something may occur.

SDbL2 Variables with modifier VAR referenced in the lower of a DiscreteBound must belong to an
enclosing Interaction.

R No other variables are visible to such expressions in RoboCert version 0.1. Reading
values from model variables is not yet supported.

SDbL3 Variables with modifier CONST referenced in the lower of a DiscreteBound must belong to
the parameterisation of the Targeta of an enclosing SpecificationGroup.

R No other constants are visible to such expressions.

SDbL4 The lower of a DiscreteBound must be present if the upper is absent.

R A bound with no ends specified is meaningless. Any constructs using DiscreteBounds
that support unboundedness do so by making the DiscreteBound itself optional.

Feature upper: SDbU
SDbU1 The upper of a DiscreteBound must be a natural, if present.

R Type safety. Other types make no sense here, as this construct represents the number
of times something may occur.

SDbU2 Variables with modifier VAR referenced in the upper of a DiscreteBound must belong to an
enclosing Interaction.

R No other variables are visible to such expressions in RoboCert version 0.1. Reading
values from model variables is not yet supported.

46 Chapter 5. Sequences: well-formedness

SDbU3 Variables with modifier CONST referenced in the upper of a DiscreteBound must belong to
the parameterisation of the Targeta of an enclosing SpecificationGroup.

R No other constants are visible to such expressions.

SDbU4 The upper of a DiscreteBound must be present if the lower is absent.

R A bound with no ends specified is meaningless. Any constructs using DiscreteBounds
that support unboundedness do so by making the DiscreteBound itself optional.

5.2.10 BranchFragmenta (§ 4.3.8): SBr
Feature branches: SBrB
SBrB1 The branches of a BranchFragmenta must not directly contain more than one ElseGuard.

R ElseGuards are the negation of the disjunction of all other guards, so the presence of
another ElseGuard would create a recursive situation whose meaning would be unclear.

SBrB2 The branches of a BranchFragmenta must not directly contain both an ElseGuard and an
EmptyGuard.

R The ElseGuard would always evaluate to false, making the branch purposeless.

5.2.11 AltFragment (§ 4.3.9)
There are no well-formedness conditions for this class.

5.2.12 XAltFragment (§ 4.3.10)
There are no well-formedness conditions for this class.

5.2.13 ParFragment (§ 4.3.11)
There are no well-formedness conditions for this class.

5.2.14 InteractionOperand (§ 4.3.12)
There are no well-formedness conditions for this class.

5.2.15 Guarda (§ 4.3.13)
Well-formedness conditions for guards proceed per subclass.

5.2.16 EmptyGuard
There are no well-formedness conditions for this class.

5.2.17 ExprGuard: SGe
An ExprGuard must have an expression that is of boolean type.

Feature expr: SGeE
SGeE1 The expr of an ExprGuard must be of Boolean type.

R Type safety.

5.3 Occurrences 47

SGeE2 Variables with modifier VAR referenced in the expr of a ExprGuard must belong to an
enclosing Interaction.

R No other variables are visible to such expressions in RoboCert version 0.1. Reading
values from model variables is not yet supported.

SGeE3 Variables with modifier CONST referenced in the expr of a ExprGuard must belong to the
parameterisation of the Targeta of an enclosing SpecificationGroup.

R No other constants are visible to such expressions.

5.2.18 ElseGuard
There are no well-formedness conditions for this class.

5.3 Occurrences
This section contains well-formedness conditions for the classes defined in § 4.4.

5.3.1 Occurrencea (§ 4.4)
There are no well-formedness conditions for this class, but there may be well-formedness conditions
on its subclasses.

5.3.2 MessageOccurrence (§ 4.4.1)
There are no well-formedness conditions for this class.

5.3.3 LifelineOccurrence: SLo
Feature actor: SLoA
SLoA1 The actor of a LifelineOccurrence must not be a World.

R The semantics of the fragment is an action on the Actora’s lifeline; a World has no
lifeline in the semantics, and so such a constraint would have no meaning.

5.3.4 WaitOccurrence (§ 4.4.2): SW
Feature units: SWU
SWU1 The units of a WaitOccurrence must be a natural number.

R A negative units amount would require the implementation to travel backwards in time;
further, the RoboChart model of time is discrete.

5.3.5 DeadlockOccurrence (§ 4.4.3)
There are no well-formedness conditions for this class.

5.4 Messages
This section contains well-formedness conditions for the classes defined in § 4.5.

5.4.1 MessageSeta (§ 4.5.1)
There are no well-formedness conditions for this class or its subclasses.

48 Chapter 5. Sequences: well-formedness

5.4.2 NamedMessageSet (§ 4.5.2)
Feature set: SSnS
SMTp1 The set of a NamedMessageSet must not reference the same NamedMessageSet, either

directly or through expansion of other references.1

R This would cause an infinitely recursive expansion of the message set contents.

5.4.3 Message (§ 4.5.3)
Feature topic: SMTp
SMTp1 A Message with an OperationTopic topic must reference an operation defined inside the

robotic platform.

R This aids in preventing currently-undefined situations where state machine lifelines call
into operations defined on the controller. Future revisions of RoboCert may weaken or
remove this condition as its validation requires non-modular knowledge of the context
of the Targeta.

SMTp2 A Message with an EventTopic topic must correspond to a Connectionrc from from to to,
and with the same efrom and (if present) eto. If the Connectionrc is bidirectional, theMessage
may match the inverse of the connection.

R This allows us to resolve a loose specification of what the intended event communication
is to a specific but unnamed part of the RoboChart model. This also pulls in the well-
formedness conditions of RoboChart connections.

SMTp3 A Message with an EventTopic topic must have an eto if the corresponding event of its
Connectionrc has a different name from that of the event corresponding to the efrom.

R This makes users be explicit about the events where there is a difference in name, while
leaving the one-event option as a convenience for the typical RoboChart idiom of both
events being named in the same way.

Feature arguments: SMA
SMA1 The arguments of aMessagemust have exactly as many elements as its topic has parameters.2

R This ensures all arguments are well-specified in a message, even if by supplying
WildcardValueSpecifications.

SMA2 The arguments of a Message must be type-compatible with their corresponding parameters.

R Type safety. Note that the type of an ExpressionValueSpecification is the type of its
underlying expression, the type of a bound WildcardValueSpecification is that of its
underlying variable, and unbound WildcardValueSpecifications have no fixed type.

Feature from: SMF
SMF1 The from of a Message must not be equal to the to of the Message.

R There is no situation in RoboChart where elements can send messages to themselves.

1In other words, there must be no cycles in NamedMessageSet definitions.
2Here, an EventTopic is considered to have 1 parameter if typed, and 0 otherwise; said parameter has the type of the

event and an arbitrary name.

5.5 Assertions 49

SMF2 The from of a Message with an OperationTopic topic must correspond to a model element
that requires the topic’s operation.

R This establishes that the operation can be called from its callee; it also binds the
operation to the well-formedness conditions of RoboChart operations by stating that a
definition for the operation must exist.

Feature to: SMT
SMT1 The to of a Message with an OperationTopic must be a World.

R In RoboCert version 0.1, operation calls that do not go from inner components to outer
components are ill-formed. As RoboChart permits operation calls from state machines
of controllers to operations defined in controllers, any extension to RoboCert that
allows the specification of operations as lifelines will relax or remove this condition.

5.4.4 MessageTopica (§ 4.5.4)
There are no well-formedness conditions for this class.3

5.4.5 EventTopic
There are no well-formedness conditions for this class.

5.4.6 OperationTopic
There are no well-formedness conditions for this class.

5.5 Assertions
There are no rules for the definitions in § 4.6.

3All conditions over topics also take the rest of the message as context, and are therefore defined over messages.

6. Sequences: textual syntax

This chapter describes the textual syntax of RoboCert sequence diagrams. See chapter 2 for
discussion on the notation and conventions used here.

6.1 Interactions

6.1.1 Actora

〈Actora〉 ::= 〈World〉 | 〈TargetActor〉 | 〈ComponentActor〉

〈World〉 ::= ‘world’

〈TargetActor〉 ::= ‘target’

〈ComponentActor〉 ::= ‘component’ QUALIFIED-NAME

6.1.2 Interaction

The syntax for actors is an extension of that permitted by Mermaid.

〈Interaction〉 ::= ‘sequence’ NAME→ 〈intVars〉? 〈intActors〉+ 〈InteractionFragmenta〉+←

〈intVars〉 ::= ‘var’ 〈Variablerc〉 (‘,’ 〈Variablerc〉)* (‘,’? ‘and’ 〈Variablerc〉)?

〈intActors〉 ::= (‘actor’ | ‘actors’) NAME (‘,’ NAME)* (‘,’? ‘and’ NAME)?

6.2 Fragments
〈InteractionFragmenta〉 ::= 〈BlockFragmenta〉 | 〈BranchFragmenta〉 | 〈Occurrencea〉

52 Chapter 6. Sequences: textual syntax

6.2.1 BlockFragmenta

Here, the distinction between types of fragment occurs in the header of the block, while a common
rule collects the body of the fragment.

A block operand is either an inline singleton fragment (denoted by the presence of a colon), or
a whitespace-delimited fragment list.

〈BlockFragmenta〉 ::= 〈blockHeader〉 NAME? 〈blockOperand〉

〈blockHeader〉 ::= 〈DeadlineFragment〉
| 〈LoopFragment〉
| 〈OptFragment〉
| 〈UntilFragment〉

6.2.2 DeadlineFragment
〈DeadlineFragment〉 ::= ‘deadline’ ‘(’ 〈Expressionrc〉 (‘unit’ | ‘units’)? ‘)’ ‘on’ NAME

6.2.3 LoopFragment
〈LoopFragment〉 ::= ‘loop’ (‘(’ 〈DiscreteBound〉 (‘time’ | ‘times’)? ‘)’)?

6.2.4 OptFragment
〈AltFragment〉 ::= ‘opt’

6.2.5 UntilFragment
When an intra-message set begins with ‘except’, read it as if there was an implicit ‘in universe’
preceding the ‘except’. ‘block until’ is sugar for ‘any in {} until’.

〈UntilFragment〉 ::= (‘block’ | (‘any’ | ‘anything’) 〈intraMessageSet〉) ‘until’

〈intraMessageSet〉 ::= ‘in’ 〈MessageSeta〉 | ‘except’ 〈MessageSeta〉

6.2.6 BranchFragmenta

Unlike BlockFragmentas, the syntax of BranchFragmentas cannot be split cleanly into varying
headers and common bodies. There are two general types of syntax: one for alternatives, and one
for parallel composition.

〈BranchFragmenta〉 := 〈altOrXAltFragment〉 | 〈ParFragment〉

〈altOrXAltFragment〉 := 〈altOrXAlt〉 NAME? 〈altOrXAltBranches〉 ‘end’

〈altOrXAlt〉 := 〈AltFragment〉 | 〈XAltFragment〉

〈altOrXAltBranches〉 := 〈branchOperand〉 (‘else’ 〈branchOperand〉)+

6.2.7 AltFragment
This is a header; see 〈altOrXAltFragment〉 above for the full syntax.

〈AltFragment〉 ::= ‘alt’ | ‘provisional’? ‘alternative’

6.2.8 XAltFragment
Similar to AltFragment.

〈AltFragment〉 ::= ‘xalt’ | ‘mandatory’ ‘alternative’

6.3 Occurrences 53

6.2.9 ParFragment
〈ParFragment〉 ::= (‘par’ | ‘parallel’) NAME? 〈parBranches〉 ‘end’

〈parBranches〉 := 〈branchOperand〉 (‘and’ 〈branchOperand〉)+

6.2.10 InteractionOperand
There is no single rule for interaction operands, as their syntax depends on whether they arise in
branch or block position. The only difference is that the latter includes a terminating ‘end’.

An elided guard desugars to ‘[always]’.

〈blockOperand〉 ::= ‘:’ 〈Guarda〉? (〈InteractionFragmenta〉 | ‘nothing’)
| 〈Guarda〉 (→ 〈InteractionFragmenta〉 ← ‘end’ | ‘nothing’)

〈branchOperand〉 ::= ‘:’ 〈Guarda〉? (〈InteractionFragmenta〉 | ‘nothing’)
| 〈Guarda〉 (→ 〈InteractionFragmenta〉 ← | ‘nothing’)

6.2.11 Guarda

〈Guarda〉 ::= ‘[’ (〈EmptyGuard〉 | 〈ExprGuard〉 | 〈ElseGuard〉) ‘]’

〈EmptyGuard〉 ::= ‘always’

〈ExprGuard〉 ::= 〈Expressionrc〉

〈ElseGuard〉 ::= ‘otherwise’

6.3 Occurrences
LifelineOccurrences take the name of their bound Actora.

〈Occurrencea〉 ::= 〈MessageOccurrence〉 | 〈LifelineOccurrence〉

〈LifelineOccurrence〉 ::= (〈WaitOccurrence〉 | 〈DeadlockOccurrence〉) ‘on’ NAME

6.3.1 MessageOccurrence
A missing temperature desugars to ‘cold’.

〈MessageOccurrence〉 ::= 〈Message〉 〈Temperature〉?

〈Temperature〉 ::= ‘hot’ | ‘cold’

6.3.2 WaitOccurrence
We capture the actor name in the rule for LifelineOccurrence.

〈WaitOccurrence〉 ::= ‘wait’ ‘(’ 〈Expressionrc〉 (‘unit’ | ‘units’)? ‘)’

6.3.3 DeadlockOccurrence
As above.

〈DeadlockOccurrence〉 ::= ‘deadlock’

54 Chapter 6. Sequences: textual syntax

6.4 Messages

6.4.1 MessageSeta

The rules for message sets are factored for precedence and associativity. The first two rules produce
BinaryMessageSets in their second productions; the first handles a DIFFERENCE; the next two
handle UNION and INTERSECTION respectively.

〈MessageSeta〉 ::= 〈unionOrInterSet〉
| 〈MessageSeta〉 ‘except’ 〈unionOrInterSet〉

〈unionOrInterSet〉 ::= 〈primitiveSet〉
| 〈unionOrInterSet〉 〈unionOrInterOperator〉 〈primitiveSet〉

〈unionOrInterOperator〉 ::= ‘or’ | ‘and’

〈primitiveSet〉 ::= ‘(’ 〈MessageSeta〉 ‘)’
| 〈UniverseMessageSet〉
| 〈ExtensionalMessageSet〉
| 〈RefMessageSet〉

〈UniverseMessageSet〉 ::= ‘universe’

〈ExtensionalMessageSet〉 ::= ‘{’ (〈Message〉 (‘,’ 〈Message〉)*)? ‘}’

〈RefMessageSet〉 ::= ‘message’? ‘set’ NAME

6.4.2 NamedMessageSet

The requirement to specify ‘message’ here, which is optional above, is intentional. Named message
sets appear in specification groups, where it is important to distinguish exactly what the type of

〈NamedMessageSet〉 ::= ‘message’ ‘set’ NAME ‘=’ 〈MessageSeta〉

6.4.3 Message

In the edge, the first NAME names a from-Actora; the second names a to-Actora.
Argument lists can be populated, empty, or elided (the latter two cases are equivalent).

〈Message〉 ::= 〈edge〉 ‘:’ 〈MessageTopica〉 〈messageArguments〉?

〈edge〉 ::= NAME ‘-»’ NAME

〈messageArguments〉 ::= ‘(’ (〈ValueSpecificationa〉 (‘,’ 〈ValueSpecificationa〉)*)? ‘)’

6.4.4 MessageTopica

〈MessageTopica〉 ::= 〈EventTopic〉 | 〈OperationTopic〉

〈EventTopic〉 ::= ‘event’ NAME (’/’ NAME)?

〈OperationTopic〉 ::= (‘op’ | ‘operation’) NAME

6.5 Assertions 55

6.5 Assertions
The production for SequenceAssertionType also governs whether the SequenceProperty is negated.

〈SequenceProperty〉 ::= 〈QualifiedName〉 〈SequencePropertyType〉 〈modelStanza〉?

〈SequenceAssertionType〉 ::= ‘holds’ | ‘does’ ‘not’ ‘hold’ | ‘is’ ‘not’? ‘observed’

〈modelStanza〉 ::= ‘in’ ‘the’ 〈SemanticModel〉 ‘model’

III

7 CSPM . 61
7.1 Metamodel
7.2 Well-formedness conditions

Low-Level Language
Interoperability

59

RoboCert contains features for directly including ‘fragments’ of low-level assertion code (for
instance, CSP-M) into textual scripts. These notations exist for testing, debugging, and expert use,
and do not have strong guarantees of stability or forward-compatibility.

RoboCert version 0.1 contains CSP-M support; support for other languages will follow later on.

7. CSPM

This chapter discusses the metamodel and notation for including CSPM fragments into CertPackages.
In CSPM, the TRACES semantic model corresponds to trace refinement with maximal progress

(τ prioritised over tock), and the TIMED semantic model corresponds to tick-tock refinement ([6]).

7.1 Metamodel
Here, we define the RoboCert metamodel for CSPM support.

7.1.1 CSPGroup� �
csp <$ print "Hello, there" $>� �

A CSPGroup is a Groupa enclosing an unprocessed fragment of CSPM, csp. This fragment is
inserted verbatim into any CSPM generated from the CertPackage.

R CSPGroups are opaque; nothing defined inside will be available for use at the RoboCert level.

7.1.2 CSPProperty� �
assertion Example1: csp <$ Proc1 [T= Proc2 $>
assertion Example2: csp negated <$ Proc1 [T= Proc2 $>� �

A CSPProperty lifts a CSP fragment into a Propertya. The CSPM within becomes the body of
an ‘assert’ or ‘assert not’ CSPM directive, depending on whether the property is negated.

R CSPProperty instances, like CSPGroups, are also opaque.

7.2 Well-formedness conditions
This section gives well-formedness conditions for the metamodel above. See § 3.1 for an introduc-
tion to the conventions used in well-formedness condition chapters.

62 Chapter 7. CSPM

7.2.1 CSPGroup (§ 7.1.1)
There are no well-formedness conditions for this class.

7.2.2 CSPProperty (§ 7.1.2)
There are no well-formedness conditions for this class.

IV
8 Introduction . 65
8.1 How to read these chapters

9 General Definitions . 67
9.1 Core language
9.2 Sequence notation

10 Timed Semantics: tock-CSP 71
10.1 Relationship to the generator
10.2 Note to the reader
10.3 Dependencies on the RoboChart semantics
10.4 Core language
10.5 Sequence notation

A Language changelog 85
A.1 This draft
A.2 Version 0.1 (2022-05-20)

Semantics

8. Introduction

This part of the manual formally captures the semantics of RoboCert in terms of its target languages.
In RoboCert version 0.1, this is tock-CSP (chapter 10); semantics for other target languages will
come in future work.

Each semantics captures Assertions as the top-level definition, with all objects reachable from
the assertions translated in-line. As a consequence, we do not capture organisational details such as
CertPackages, or any distinction between references to objects and their definitions.

8.1 How to read these chapters
The semantics treatments in this part take the form of rewrite rules from the RoboCert metamodels
to some object language (for instance, tock-CSP). For conciseness, we use a meta-language based
on the Z notation. We also use the following notational conventions:

• [[−]]name denotes a main semantic rule;
• name() denotes auxiliary semantic functions;
• x.name denotes a field of the metamodel object x;
• underlined grey text denotes a construct from the meta-language; normal mathematical text
constitutes the object language;

• in function types, the suffix ? denotes an object that may be absent (for instance, the value of
an optional feature). Let ⊥ represent the absence of a value of such a type. As a notational
convenience, we assume that any semantic function on type T lifts to type T? such that, unless
otherwise defined, the application of the function on ⊥ returns ⊥.

9. General Definitions

This chapter contains functions and rewrite rules that are agnostic to the particular target language.

9.1 Core language
This section provides helper definitions for capturing the core semantics of RoboCert.

9.1.1 Values (§ 1.4)
These definitions provide support for transforming or extracting information from expressions and
value specifications.
Definition 9.1.1 — Expression variables. Function eVars is defined as the depth-first traversal of all
RoboCert-level non-constant variables in an expression.

eVars : Expressionrc→ seq Variablerc

This function is not concretely defined here; this may change in subsequent manual revisions.

Definition 9.1.2 — Bound variables of a ValueSpecificationa. Function vBind collects the variables
bound in a ValueSpecificationa.

vBind : ValueSpecificationa → seq Variablerc

Case analysis of the value specification.

vBind(x : WildcardValueSpecification) def
= 〈x : 〈x.destination〉 • x 6= ⊥〉

vBind(x : ExpressionValueSpecification) def
= 〈〉

9.2 Sequence notation
This section provides helper definitions for capturing the semantics of RoboCert sequence diagrams.

68 Chapter 9. General Definitions

9.2.1 Interactions (§ 4.2.2)
These definitions support the semantics of Interactions.
Definition 9.2.1 — Namespace of an actor. Function actNs resolves a Actora to a CSP namespacea
under which the connection endpoints and callable operations of the Actora appear as channels.

actNs : Actora→ Namespace

This function is not concretely defined here; this may change in subsequent manual revisions.
aStrictly speaking, namespaces are a CSPM extension to CSP; however, we adopt them in this semantics as the

formal semantics of RoboChart elements uses them. We can model them as a prefix on CSP channel names.

9.2.2 Fragments (§ 4.3)
These definitions support the semantics of InteractionFragmentas.
Definition 9.2.2 — Fragment list. Function flist yields a set of pairs (i, f) such that every fragment
of the given metaclass maps to precisely one f and each i is unique (typically this would reflect
the order of depth-first traversal of the object graph).

flist : Interaction→ Class → P(N× InteractionFragmenta)

This function is not concretely defined here; this may change in subsequent manual revisions.

Definition 9.2.3 — Fragment index. Function findex is defined such that findex(f , c) = i where,
for the parent Interaction s, (i, f) ∈ flist(s, c).

findex : InteractionFragmenta→ Class → N

This function is not concretely defined here; this may change in subsequent manual revisions.

Definition 9.2.4 — Fragment expressions. Function fexprs collects expressions directlya contained
within a InteractionFragmenta.

fexprs : InteractionFragmenta→ seq Expressionrc

We define exprs as a combination of the guard expressions of any operands (fops) within the
fragment, as well as any expressions unique to the type of fragment being considered; we delegate
these to an auxiliary function fdexprs.

fexprs(x) def
= fdexprs(x)a (〈o : fops(x) | o.guard ∈ ExprGuard • o.guard.expr〉)

We define fdexprs below.

fdexprs : InteractionFragmenta→ seq Expressionrc

For occurrences, we delegate to oexprs; for loops, we take the expressions contained within the

9.2 Sequence notation 69

loop bound (bexprs; def. 9.2.6); for everything else, this is the empty sequence.

fdexprs(x : OccurrenceFragment) def
= oexprs(x.occurrence)

fdexprs(x : LoopFragment) def
= bexprs(x.bound)

fdexprs(x : InteractionFragmenta) def
= 〈〉 (default)

aIn other words, fexprs does not recurse.

Definition 9.2.5 — Fragment operands. Function fops collects InteractionOperands contained
within a InteractionFragmenta.

fops : InteractionFragmenta→ seq InteractionOperand

Case analysis on the type of fragment:

fops(x : OccurrenceFragment) def
= 〈〉

fops(x : BranchFragmenta) def
= x.branches

fops(x : BlockFragmenta) def
= 〈x.body〉

Definition 9.2.6 — Bound expressions. The expressions of a DiscreteBound are just the upper and
lower bound expressions, excluding any undefined expressions.

bexprs : DiscreteBound→ seq Expressionrc

bexprs(b) def
= 〈x : 〈b.lower, b.upper〉 | x 6= ⊥〉

9.2.3 Occurrences (§ 4.4)
These definitions support the semantics of Occurrenceas.
Definition 9.2.7 — Relevant actors. The relevant actors oactors(o) of a Occurrencea o is the set
of Actoras for which the Occurrencea should emit an effect. When considering the semantics of
a lifeline, any Occurrenceas not including that lifeline in the relevant actors become Skip.

oactors : Occurrencea→ P(Actora)

Case analysis on the type of occurrence (capturing all lifeline-bound occurrences with one rule):

oactors(x : LifelineOccurrence) def
= {x.actor}

oactors(x : MessageOccurrence) def
= {a : {x.message.from, x.message.to} | a 6∈ World}

Definition 9.2.8 — Occurrence expressions. Function oexprs finds expressions in an Occurrencea.

oexprs : Occurrencea→ seq Expressionrc

Case analysis on the type of occurrence. Deadlock occurrences have no expressions. Wait
occurrences yield their delay units. Message occurrences yield every expression that is directly

70 Chapter 9. General Definitions

contained inside an argument.

oexprs(x : DeadlockOccurrence) def
= 〈〉

oexprs(x : WaitOccurrence) def
= 〈x.units〉

oexprs(x : MessageOccurrence) def
= a/

〈 a : x.message.arguments
| a ∈ ExpressionValueSpecification • a.expr 〉

9.2.4 Messages (§ 4.5)
These definitions support the semantics of Messages.
Definition 9.2.9 — Connection of an event. Function eConn takes an EventTopic and a pair of
Actoras capturing the ends of its encompassing Message, and yields the underlying Connectionrc.
This function is total provided that neither Actora is aWorld and that every inter-component event
Message has an underlying Connectionrc; the latter is a well-formedness condition (see § 5.4).

eConn : EventTopic→ (Actora × Actora)→ Connectionrc

This function is not concretely defined here; this may change in subsequent manual revisions.

10. Timed Semantics: tock-CSP

This chapter introduces a tock-CSP semantics for RoboCert. As the original target notation, it
serves as the most fully-realised form of the RoboCert semantics.

We assume the rules of chapter 9 are in scope, including imports from the RoboChart semantics.

10.1 Relationship to the generator

The behaviour of the RoboCert generator shall conform to this semantics, except that the generator:
• may, where CSP constructs are missing or not idiomatic, substitute semantically equivalent
CSPM constructs;

• must wrap processes in timed sections and prioritisations to achieve the appropriate tock-CSP
behaviours of CSP operators;

• may perform semantics-preserving optimisations, such as substituting P for Stop 4 P.
There is, in principle, a 1:1 mapping from rules in this chapter to rules in the generator. The

generator is, however, a Java library, and so its native object-oriented paradigm does not map directly
to the functional, mathematical style used throughout this chapter.

10.2 Note to the reader

As of time of writing, this section is still being written. Some semantic functions are missing or
incomplete. Where parts of the semantics are missing, the authority on the semantics of RoboCert
remains its implementation in the generator.

While semantic rules and functions are missing in this report, a snapshot of the generator source
code will be available at https://github.com/UoY-RoboStar/robocert-evaluation/
raw/main/generator-src.zip. Discrepancies between the behaviour of this generator and the
rules in this report should be considered to be bugs.

https://github.com/UoY-RoboStar/robocert-evaluation/raw/main/generator-src.zip
https://github.com/UoY-RoboStar/robocert-evaluation/raw/main/generator-src.zip

72 Chapter 10. Timed Semantics: tock-CSP

10.3 Dependencies on the RoboChart semantics
Each semantics treatment in this section assumes the existence of a compatible semantics for
RoboChart. Specifically, we assume the following rules and functions are available, or can be
derived, from such a semantics:

• let targetProcess (−) map a target to the parametric process exposed by the relevant tock-
CSP semantics (for instance, we delegate to the RoboChart semantics for the underlying
RCModulerc of a ModuleTarget);

• let targetParams (−) map a target to the sequence of constants in its parameterisation;
• let constName (−) map a constant to its name in the RoboChart instantiations file;
• let [[−]]type map a RoboChart type to the set of CSP values that inhabit it.

10.4 Core language
These rules implement the semantics for the core language of RoboCert in tock-CSP.

10.4.1 Top-level (§ 1.2)
The top level definition for the RoboCert semantics as a whole is Assertion (§ 10.4.4). There is no
semantics for groups and packages, as they are purely organisational.

10.4.2 Targets (§ 1.3)
We appeal to the semantics of the underlying RoboChartmodel components of targets, and therefore
do not give them a separate semantics.1

10.4.3 Values (§ 1.4)
These rules concern values and expressions.

Expressions
These rules concern RoboChart expressions.
Definition 10.4.1— Expression context. Let ExprContexta be a pseudo-metaclass capturing anything
that can serve as a context for expression evaluation. In RoboCert version 0.1, this is Interaction
or anything nested inside an Interaction, but future versions will add more contexts.

Rule 1 — Expression (§ 1.4.1). Rule [[x]]exprc is the expression semantics of x in the scope of context
c. The expression semantics is largely that of RoboChart which, in turn, is largely that of Z.
One distinction is that we resolve non-constant variables at the RoboCert level; for instance,
inside a Interaction such variables resolve to those attached to the Interaction.

[[−]]expr− : Expressionrc→ ExprContexta→ Value

This rule is not concretely defined here; this may change in subsequent manual revisions.

We can interpret ValueSpecificationas in three ways. The first ([[−]]val− , rule 2), used in Mes-
sageOccurrences, is the definitive semantics of a value specification as a CSP channel extension.
The second ([[−]]sval− , rule 3), used in MessageSetas, is identical to [[−]]val− except that it captures
wildcards as bindings to an external set comprehension. and involves rule [[−]]val− The third, also
used in MessageSetas, captures all possible values of a value specification as a set; it involves
function expVal (def. 10.4.2), and we use it to supply the sets for said comprehensions.

1Collection targets do require a degree of composition of RoboChart components, but this composition follows from
the inner definitions of the parent components of the collections.

10.4 Core language 73

Value specifications

These rules concern ValueSpecificationas (‘arguments’).
Rule 2 — Value specifications (§ 1.4.2). This rule captures the semantics of a value specification
as a channel transformer—an input (?) or output (!). This transformer will be used, for instance,
to suffix the channel coming from a MessageTopica (see rule 17). The semantics requires an
additional context to pass to the expression rule.

[[−]]val− : ValueSpecificationa→ Channel× ExprContexta → (Channel→ Channel)

Case analysis on specification type. Wildcards become inputs (using the binding if it existsa);
expression specifications become outputs of the value resulting from the expression.

[[x : WildcardValueSpecification]]valc
def
= ?(if x.destination = ⊥ then else x.destination)

[[x : ExpressionValueSpecification]]valc
def
= ![[x.expression]]exprc

aPer def. 10.5.15, implementationsmay rename the binding to prevent shadowing, so long as there is consistency.

Rule 3 — Value specifications in set position. As with rule 2, this rule captures the semantics of
a value specification. However, instead of binding wildcards to CSP outputs, it assumes that a
set-comprehension binding of a given name is in scope, and uses that. This means that the rule
is useful alongside def. 10.4.2 for defining message sets.

The semantics requires an additional context to pass to the expression rule. Unlike rule 2,
it does not take the destination channel; instead, it takes the parameter corresponding to the
ValueSpecificationa, from which we ascertain the name of the set-comprehension binding.a

[[−]]sval− : ValueSpecificationa→ Parameterrc × ExprContexta → Value

Case analysis on specification type. Wildcards become the value bound to a comprehension
variable with the same name as the input parameter. Expression specifications become the value
resulting from the expression.

[[x : WildcardValueSpecification]]sval(p,c)
def
= p.name

[[x : ExpressionValueSpecification]]sval(p,c)
def
= [[x.expression]]exprc

aNote that the typing of the result as Value implies that the set-comprehension binding has been resolved.

Definition 10.4.2 — Support sets of value specifications. Function expVal captures the set of values
that satisfy a specification, given the associated parameter and an expression evaluation context.

expVal : ValueSpecificationa→ Parameterrc→ ExprContexta→ P(Value)

Case analysis on specification type. Wildcards permit any value of the parameter type; expres-
sions permit only the value of the included expression.

expVal(x : WildcardValueSpecification, p, c) def
= [[p.type]]type

expVal(x : ExpressionValueSpecification, p, c) def
= {[[x.expression]]exprc }

74 Chapter 10. Timed Semantics: tock-CSP

10.4.4 Assertions (§ 1.5)

These rules implement the semantics of assertions, which forms the top level of RoboCert semantics.

Rule 4 — Assertion (§ 1.5.2). [[x]]asst is the semantics of Assertion x. There is no semantic distinc-
tion between assertions and properties.

[[−]]asst : Assertion→ Prop [[x]]asst def
= [[x.property]]prop

Rule 5 — Propertya (§ 1.5.2). [[x]]prop is the semantics of Propertya x.

[[−]]prop : Propertya→ Prop

Case analysis on subtype, applying negation to CSP and sequence properties. Any CSPProperty
instances lift directly into tock-CSP, with negated applied if necessary. Other instances delegate
to further semantic rules.

[[x : CSPProperty]]prop def
= pneg(x.csp) [[x : CoreProperty]]prop def

= [[x]]cprop

[[x : SequenceProperty]]prop def
= pneg([[x]]sprop)

Rule 6 — CoreProperty (§ 1.5.3). [[x]]cprop is the semantics of CoreProperty x.

[[−]]cprop : CoreProperty→ Prop

First, delegate to an auxiliary function over type, negation, and target semantics:

[[x]]cprop def
= cp(x.type, x.negated, [[x.group.target]]tgt)

Then, case analysis on the negation and core property type. Aside from termination, negated
properties are the pneg of their positive counterparts.

In the rules below, we assume that τ has priority over tock (the maximal progress principle).
In CSP-M encodings, we make this explicit. We also assume an arbitrary channel r.

cp(TERMINATION , true , t) def
= ¬(deadlock freeFD t) ∧ deadlock freeFD (t o

9 Run({r})

cp(TERMINATION , false, t) def
= Stop vT (t o

9 r → Skip)

cp(TIMELOCK FREE , true , t) def
= Run({tock}) ||| Chaos(Events \ {tock}) vF t

cp(DEADLOCK FREE, true , t) def
=

divergence free
prioritise(
t[tock← tock, tock← tock′], 〈Events \ {tock}〉

) \ {tock}

cp(DETERMINISM , true , t) def

= deterministicFD t

cp(TIMELOCK FREE , false, t) def
= pneg(cp(TIMELOCK FREE, true, t))

cp(DEADLOCK FREE, false, t) def
= pneg(cp(DEADLOCK FREE, true, t))

cp(DETERMINISM , false, t) def
= pneg(cp(DETERMINISM, true, t))

10.5 Sequence notation 75

Rule 7 — SemanticModel. [[x]]mdl is the semantics for SemanticModel x.

[[−]]mdl : SemanticModel→ Model

Case analysis on m. The semantics of a SemanticModel maps the traces RoboCert model to the
CSP traces model, and the timed model toX-tock.

[[TRACES]]mdl def
= T [[TIMED]]mdl def

= TT

Definition 10.4.3 — Property negation. Function pneg lifts the potential negation of property
p into the level of CSP propositions, taking a proposition c to which the negation should be
applied.

pneg : Propertya→ Prop→ Prop pneg(p, c) def
= if p.negated then ¬ c else c

10.5 Sequence notation

These rules implement the tock-CSP semantics of the sequence notation. See § 9.2 for general
definitions used in the rules below.

10.5.1 Assertions (§ 4.6)

These rules implement the semantics of sequence properties.
Rule 8 — SequenceProperty (§ 4.6.1). The semantics of sequence properties is a refinement
between the Interaction and the Targeta of its specification group. When the property is a HOLDS
property, the Targeta is in implementation position. In an IS OBSERVED property, it is in
specification position, and the sequence is made partial through composition with timestop.

[[−]]sprop : SequenceProperty→ Prop

Split on x.type:

[[x]]sprop def
= if x.type = IS OBSERVED

then [[x.sequence.group.target]]tgt v[[x.model]]mdl [[x.sequence]]int o
9 StopU

else [[x.sequence]]int v[[x.model]]mdl [[x.sequence.group.target]]
tgt

10.5.2 Sequences (§ 4.2)

These rules implement the semantics of sequences (Interactions) and their constituent processes.
Definition 10.5.1 — Interaction contexts. Pseudo-class InteractionContext represents the context
carried across semantic functions for interactions. It consists of:

• the Interaction, used to resolve interaction-global elements;
• the set of all Actoras that are covered by the element whose semantics are being elaborated.
For a lifeline over actor a, this is a singleton set {a}. If we are within a sequentialised
situation such as a UntilFragment, the set will instead be U.

InteractionContext def
= (Interaction× P(Actora))

76 Chapter 10. Timed Semantics: tock-CSP

Rule 9 — Interaction (§ 4.2.2). Rule [[x]]int maps Interaction x to a CSP process.

[[−]]int : Interaction→ Process

We define interactions in stages, lifting a basic lifeline process set into various contexts. At the
top level, we hide the special channel term, which coordinates termination across the sequence
and its auxiliary processes.

[[x]]int def
=
(
intMemory(x)

)
\ {term}

The next stages take the form of auxiliary context-lifting functions:

intMemory : Interaction→ Process intUntil : Interaction→ Process

intLifelines : Interaction→ Process

The first level of the rule applies the memory.a We define msync(x) and mem(x) in § 10.5.7.

intMemory(x) def
=
(
intLifelines(x) |[msync(x)]| until(x)

)
\ msync(x)

The next level of the definition applies the until process and parallel composition synchronisation.b
We define the set sync in def. 10.5.2.

intUntil(x) def
=
(
intLifelines(x) |[sync]| until(x)

)
\ sync

Next, we define the core lifeline process.

intLifelines(x) def
= ‖ a : {a : x.actors | a 6∈ World} • alphax.name(a) ◦ lifelinex.name(a)

where we define the following two process functions stepwise, in CSP, for each a:

alphax.name(a) = α(a, b) lifelinex.name(a) = o
9 f : a.fragments • [[b1]]frag(x,{a})

aThe implementation may omit this lifting if there are no variables.
bThe implementation may omit parts of this lifting if there are no UntilFragments or ParFragments.

Definition 10.5.2 — Sync channel set. Function sync generates a channel set for synchronising
auxiliary processes in sequences.

sync : Interaction→ P(Channel)

We define sync(s) as containing two types of synchronisation channel: until and par. The former,
representing synchronisation on UntilFragments, communicates the findex of the UntilFragment
in question as well as the direction of synchronisation. The latter, representing synchronisation
on ParFragments, communicates the findex of the ParFragment; it has only one direction.

sync(s) def
=
⋃
{i : 0..#flist(s,UntilFragment)− 1, d : {in, out}, • until.i.d} ∪⋃
{i : 0..#flist(s,ParFragment)− 1 • par.i}

Here, i numbers each par and until fragment by position in the diagram; d states whether we are
entering or leaving the fragment.

10.5 Sequence notation 77

10.5.3 Fragments (§ 4.3)
These rules implement the semantics of InteractionFragmentas.
Rule 10 — InteractionFragmenta(§ 4.3). The top-level interaction fragment rule takes both a
fragment and an interaction context (def. 10.5.1).

[[−]]frag− : InteractionFragmenta→ InteractionContext→ Process

The fragment rule must first load from memory any variables referenced directly by the fragment.
We generate the loading process by extracting expressions with fexprs (def. 9.2.4), extracting
from those expressions the variables inside (def. 9.1.1), then passing them to load (def. 10.5.15).

[[x]]fragc
def
= load(a/ 〈e : fexprs(x) • eVars(e)〉) o

9 fragBody(x, c)

We now define fragBody, which handles the part of the fragment semantics that follows any
control-flow variable loading.

fragBody : InteractionFragmenta→ InteractionContext→ Process

Case analysis on high-level types of fragment (we define oactors in def. 9.2.7):

fragBody(x : BlockFragmenta)(c) def
= [[x]]blfragc

fragBody(x : BranchFragmenta)(c) def
= [[x]]brfragc

fragBody(x : OccurrenceFragment)((s, a)) def
= if a ∩ A(o) = ∅

then Skip else [[x.occurrence]]occs

Rule 11 — BlockFragmenta (§ 4.3.2). The basic semantics of a BlockFragmenta is:a

[[−]]blfrag− : BlockFragmenta→ InteractionContext→ Process

Case analysis on concrete type of fragment:

[[x : DeadlineFragment]]blfrag(s,a)
def
= if x.actor ∈ a then

(
[[x.body]]iop(s,a) I [[x.units]]exprs

)
else [[x.body]]iop(s,a)

[[x : LoopFragment]]blfrag(s,a)
def
= loop

(
x.bound, s, [[x.body]]iop(s,a)

)
[[x : OptFragment]]blfragc

def
= [[x.body]]iopc u Skip

[[x : UntilFragment]]blfragc
def
= until.findex(u,UntilFragment).in→

until.findex(u,UntilFragment).out → Skip
aImplementationsmay replace the semantics of UntilFragments with the contents of until(x) when synchronisation

with other lifelines is not needed.

Definition 10.5.3 — LoopFragment (§ 4.3.4). Because the semantics of a LoopFragment depends
on its DiscreteBound, we use an auxiliary function loop to capture its semantics. This function

78 Chapter 10. Timed Semantics: tock-CSP

lifts a pre-expanded semantic transformation of the body based on the bound.

loop : DiscreteBound? → Interaction→ Process→ Process

Case analysis on the definedness of the bound:

loop(⊥, s,P) def
= µ x • P o

9 x loop(b, s,P) def
= bLoop([[b.lower]]exprs , [[b.upper]]exprs ,P)

Another function, bLoop, handles the further expansion of loops that have a defined Dis-
creteBound. It accepts the bounds as potentially-undefined natural numbers.

bLoop : N? → N? → Process→ Process

Case analysis on on the definedness of the upper and lower bounds, where:
upper bound u only an exact bound (ie, we interpret the missing lower bound as being u); here,

there is a straightforward parametric recursive process expansion that loops u times;
lower bound l only a combination of an exact-bounded loop for l iterations followed by a loop

recursing a nondeterministic amount of times;
both bounds a combination of an exact-bounded loop for l iterations followed by a parametric

recursive process that, for up to u− l iterations, either terminates or iterates;
no bounds ill-formed.

bLoop(⊥,⊥,P) def
= undefined

bLoop(l,⊥,P) def
= bLoop(⊥, l,P) o

9 (µ x • Skip u (P o
9 x))

bLoop(⊥, e,P) def
= let L(x) = (if x = 0 then Skip else (P o

9 L(x − 1)))within L(e)

bLoop(l, u,P) def
= bLoop(⊥, l,P) o

9(let L(x) = Skip u (if x = 0 then Skip else (P o
9 L(x − 1)))

within L(u− l)

)
Rule 12 — BranchFragmenta (§ 4.3.8). The basic semantics of a BranchFragmenta is:

[[−]]blfrag− : BranchFragmenta→ InteractionContext→ Process

Case analysis on concrete type of fragment:

[[x : ParFragment]]brfragc
def
= ||| {p : x.branches • [[p]]iopc } o

9 par.pindex(x).out → Skip

[[x : AltFragment]]brfragc
def
= u {p : x.branches • [[p]]iopc }

[[x : XAltFragment]]brfragc
def
= 2 {p : x.branches • [[p]]iopc }

pindex(x) def
= findex(x,ParFragment)

The semantics of OptFragment is therefore equivalent to the semantics of a AltFragment with
two branches: one containing the body, another containing a EmptyGuard and zero fragments.

10.5.4 Occurrences (§ 4.4)

These rules capture the semantics of Occurrenceas, as well as the temperature modality of Mes-
sageOccurrences. Occurrence semantics requires the parent Interaction, for expression evaluation.

10.5 Sequence notation 79

Rule 13 — Occurrencea (§ 4.4). This rule captures the top-level Occurrencea semantics.

[[−]]occ− : Occurrencea→ Interaction→ Process

Case analysis on the type of Occurrencea:

[[x : DeadlockOccurrence]]occs
def
= Stop

[[x : MessageOccurrence]]occs
def
= heat([[x.message]]msgs , x.temperature)

[[x : WaitOccurrence]]occs
def
= wait[[x.units]]exprs

Definition 10.5.4 — Temperature. Function heat(p, t) applies temperature t to CSP process p.

heat : Process→ Temperature→ Process

Case analysis on temperature:

heat(p,HOT) def
= p heat(p,COLD) def

= µ q •
(
p u tock→ q

)
10.5.5 Messages (§ 4.5)

These rules implement the semantics of Messages and related classes.

Message sets
The RoboCert message set language is a straightforward shallow embedding of a simple set algebra
enriched with a notion of named references to sets, and the semantics reflects this.

Rule 14 — MessageSeta (§ 4.5.1). Rule [[m]]msetc gives semantics to MessageSeta m in context c.

[[−]]mset− : MessageSeta→ InteractionContext→ P(Event)

Case analysis of the subtypes of set. AUniverseMessageSet represents the universe of all events.a
A ExtensionalMessageSet is the union of the event sets of each message, which we get from
expMsg (def. 10.5.5). A BinaryMessageSet represents binary set operations (which expand to
those operations); a RefMessageSet captures references (which expand to the referred-to set).

[[x : UniverseMessageSet]]msets
def
= U

[[x : ExtensionalMessageSet]]msets
def
=
⋃
{m : x.messages • expMsg(x, s)}

[[x : BinaryMessageSet]]msets
def
= binset(x.operator, [[x.lhs]]msets , [[x.rhs]]msets)

[[x : RefMessageSet]]msets
def
= [[x.set]]nmsets

We define binset as follows:

binset : BinarySetOperator→ MessageSeta→ MessageSeta→ P(Event)

Case analysis on the operator:

binset(UNION, l, r) def
= l ∪ r binset(INTERSECTION, l, r) def

= l ∩ r

binset(DIFFERENCE, l, r) def
= l \ r

80 Chapter 10. Timed Semantics: tock-CSP

aFuture versions of RoboCert may refine this to the set of all events that can originate from participants in the
sequence, or provide a mechanism for specifying the set of all events from a specific participant.

Rule 15 — NamedMessageSet (§ 4.5.2). The semantics of a NamedMessageSet is that of its set.

[[−]]nmset− : MessageSeta→ Interaction→ P(Event) [[x]]nmsetc
def
= [[x.set]]msetc

Messages
The semantics of a message depends on:

• whether the message is inside a MessageOccurrence (in which case, its semantics is that
of a single event with possible binding and matching of argument patterns) or inside a
MessageSeta (its semantics is that of a set of events satisfying certain argument patterns);

• whether the topic of the feature is an operation or an event;
• the pair of Actoras connected by the message, which determine the RoboChart model com-
ponent associated with the translated CSP events and their direction, if applicable;

• the ValueSpecificationas forming message arguments, which become suffixes to the CSP event
(and, in the case of message sets, quantifications in the set comprehension).

Rule 16 — Message (§ 4.5.3). The semantics of a Message resolves to a CSP process in which
the message topic and arguments form a prefix (which may bind wildcard arguments to inputs),
and a subsequent storage phase discharges those inputs into the sequence memory. As such,
there is a distinction between this rule and expMsg, which expands all possible invocations of a
message into an event set.

[[−]]msg− : Message→ Interaction→ Process

To form a message, we expand its topic into a channel stub, then recursively attach each argument
to the stub as an input or output. We assert that the result is a well-typed process, by appeal to the
well-formed conditions in § 5.4. Any bindings of arguments to CSP outputs must be propagated
to memory; we collect each vBind (def. 9.1.2) and store them to memory (def. 10.5.16).

[[x]]msgs
def
= args([[x.topic]]topic(x.from,x.to), x.arguments, s)→ store(vBind(x.arguments))

Definition 10.5.5 — Expansion of messages. Function expMsg expands a Message into the set of
all possible CSP events that can arise from it.

expMsg : Message→ Interaction? → P(Event)

As with [[x]]msgs , expMsg elaborates the topic first and then recursively applies arguments. There
are two differences. First, the argument expansion is in two stages: one stage cargs produces a
set comprehension over all wildcard arguments; a second sargs behaves similarly to args in that
it appends arguments to the topic stub (but expands wildcards to comprehension bindings rather
than inputs). we do not store bindings (as they are not allowed in message set position).

10.5 Sequence notation 81

If there are no arguments, we do not emit a set comprehension.a

expMsg(x, s) def
= if x.arguments = 〈〉 then [[x.topic]]topic(x.from,x.to)

else

cargs(params(x.topic), x.arguments) •sargs([[x.topic]]topic(x.from,x.to),params(x.topic), x.arguments, s)

aImplementations may also inline comprehension bindings for arguments where there is only one possible value.

Message topics
These rules concern the part of the Message semantics that varies with different MessageTopicas.
Rule 17 — MessageTopica (§ 4.5.4). This rule expands a MessageTopica to a channel (which,
if the message has arguments, must be completed with arguments to become an event). The
semantics of a topic also depends on the pair of Actoras being connected by the topic.

[[−]]topic− : MessageTopica→ (Actora × Actora) → Channel

Case analysis on whether the topic is an operation (def. 10.5.6) or an event (def. 10.5.7).

[[x : OperationTopic]]topic(f ,t)
def
= oTopic(x.operation, t)

[[x : EventTopic]]topica
def
= eTopic(x.event, a)

Definition 10.5.6 — OperationTopic. Function oTopic handles the semantics of an OperationTopic.

oTopic : OperationTopic→ Actora→ Channel

We assume through well-formedness that the to-Actora is a World, and so the semantics of the
topic is the elaboration of the operation name within the namespace of the Actora’s associated
Process. We find the latter using actNs (def. 9.2.1).

oTopic(x, t) def
= actNs(t) :: x.operation.nameCall

Definition 10.5.7 — EventTopic. Function eTopic handles the semantics of an EventTopic.

eTopic : EventTopic→ (Actora × Actora) → Channel

We define the event topic semantics as the combination of several components of information
about an event as resolved by an auxiliary function einfo. These components are, in order: the
direction (input/output) of the event; the ‘base’ Actora from which this side of the event is visible;
and the event itself. The high-level output of this rule is similar to that for oTopic, but accounting
for the above.

eTopic(t, a) def
= let (d, b, e) = eInfo(t, a)within actNs(b) :: eventId(e).d

Event resolution
Much of the semantics of messages concerns resolving EventTopics into triples of event direction,
base Actora, and underlying Event. We implement this as a series of functions below.

Definition 10.5.8 — Event information. Function eInfo resolves the direction, base Actora, and

82 Chapter 10. Timed Semantics: tock-CSP

Eventrc of an EventTopic. This resolution reflects the RoboChart semantics for events.

eInfo : EventTopic→ (Actora × Actora)→ ({in, out} × Actora × Event)

At the top level, eInfo is a case analysis on the Actoras. If one actor is a World (the message is
either inbound or outbound), then the base actor is its opposite; the Eventrc is that defined on
the base actor’s end of the message; and the direction is that of the message with respect to the
base actor (for instance, if the from-actor is a World, the direction is in as it is heading into the
to-actor). This ensures that the semantics refers only to elements visible in the current Targeta.

If neither of the actors are a World, we have an inter-component communication. RoboCert
version 0.1 does not yet support asynchronous communications here. For synchronous commu-
nications, we delegate to eConn (def. 9.2.9) to find the underlying Connectionrc, and eSync to
expand it into a direction, actor, and event.

Well-formedness conditions prevent the ambiguous situation of both actors being World.

eInfo(e, (f : World, t)) def
= (in, t, if e.eto = ⊥ then e.from else e.to)

eInfo(e, (f , t : World)) def
= (out, f , e.efrom)

eInfo(e, (f , t)) def
= eSync((f , t), f .node,eConn(e, (f, t))) (default)

Definition 10.5.9 — Event information (synchronous inter-component). Function eSync resolves
the direction, base Actora, and Eventrc of a synchronous, inter-component EventTopic, given its
actor pair and already-resolved Connectionrc.

eSync : EventTopic→ (Actora × Actora)→ Connectionrc→ ({in, out} × Actora × Event)

The definition of eInfo closely matches rule 15 of the RoboChart semantics. In that rule,
synchronous input and output pairs merge to form a single CSP event from the perspective of
the ‘from’ node of the Connectionrc.

Usually, then, we take the direction as being out (the message comes out of the ‘from’ node),
the base actor as being that corresponding to the ‘from’ node, and the event as the ‘from’ event.
We must, however, handle the possibility of an event topic that captures a bidirectional message,
and whose Actoras are in the opposite position from the defined endpoints of the underlying
Connectionrc. In this case, we reverse the direction and Actora choice.

eSync(e, (f , t), c) def
= if f = c.from then (out, f , c.efrom) else (in, t, c.efrom)

Arguments

The following semantic functions handle the appendage of arguments (ValueSpecificationas) onto
channels and sets formed by considering MessageTopicas. (The definition of the semantics for
ValueSpecificationa can be found at rule 2 and def. 10.4.2.)
Definition 10.5.10 — Arguments in event position. Function args recursively adds the semantic
elaboration of each argument, through [[−]]val− (rule 2), onto the channel being built.

args : Channel→ seq ValueSpecificationa → Interaction→ Event

By recursion on the ValueSpecificationa list.

args(c, 〈〉, s) def
= c args(c, 〈a〉a x, s) def

= args(([[a]]vals)(c), x, s)

10.5 Sequence notation 83

Definition 10.5.11 — Arguments in set position. Function sargs recursively appends the semantic
elaboration of each argument, through [[−]]sval− (rule 3), onto the channel being built.

sargs : Channel→ seq Parameterrc → seq ValueSpecificationa → Interaction? → Event

By recursion on the ValueSpecificationa list. We assume the well-formedness condition that lists
of arguments and corresponding parameters are of equal length.

sargs(c, 〈〉〈〉, s) def
= c sargs(c, 〈p〉a x, 〈a〉a y, s) def

= sargs(c.[[a]]sval(p,s), x, y, s)

Definition 10.5.12 — Argument set comprehension. Function cargs recursively builds a set com-
prehension binding for a series of arguments, by applying expVal (def. 10.4.2) to each.

cargs : seq Parameterrc → seq ValueSpecificationa → Binding

By recursion on the lists. We assume the well-formedness condition that lists of arguments and
corresponding parameters are of equal length. We also assume that the lists are non-empty.

cargs(〈p〉〈a〉, s) def
= expVal(a, p)

cargs(〈p〉a x, 〈a〉a y, s) def
= expVal(a, p),cargs(x, y, s)

10.5.6 The until process
These rules implement the semantics ofUntilFragments in terms of an auxiliary process that linearises
the fragment bodies.
Definition 10.5.13 — Until process. The until process handles UntilFragment bodies for a Interaction.

until : Interaction→ Process

The process is a recursive offer of synchronisation on every UntilFragment in the Interaction until
the Interaction terminates.

until(x) def
= µ p • (term→ Skip) 2

(
2(i, u) : flist(x,UntilFragment) •
sync.i.in→ ufrag(u, x)→ sync.i.out → p

)

We define the semantics of an individual fragment through an auxiliary function. The semantics
is to allow deadlock, time passage, or any event in the message set of the fragment until the
trigger process has taken effect.

ufrag : UntilFragment→ Interaction→ Process

ufrag(u, s) def
= TChaos([[u.intraMessages]]msets) 4 [[u.body]]iop(s,U)

10.5.7 Memory
These rules implement the semantics of sequence memory. This includes the memory process as
well as loads and stores.
Definition 10.5.14 — Memory process. The memory process persists RoboCert-level variables.

mem : P(Variablerc) → Process

84 Chapter 10. Timed Semantics: tock-CSP

The memory process closes over a function from variables to values, starting with every variable
mapped to its initial value.a It offers the choice of setting variables (which overrides their
definition in the function) and getting variables (which outputs their current value in the function).
As with most auxiliary processes, it offers to terminate on term.

mem(v) def
=

let M(r) =

(term→ Skip) 2
2 n : {x : v • x.name} •(

(var.n.set?x → M(r ⊕ {n 7→ x})) 2
(var.n.get!r(x)→ M(r))

)

within M({n : {x : v • x.name} • n 7→ initial(x)})

aImplementations may capture this relation in any way that provides a compatible semantics. The reference

implementation uses sequences indexed on the position of the variable in a list, rather than functions over names.

Definition 10.5.15 — Loading. The load function implements variable loads.

load : seq Variablerc → Process

A load process is the sequential composition of inputs on the var channel for every variable in
the given variable list.a

load(v) def
= o

9 n : {x : v • x.name} • var.n.get?n→ Skip
aImplementations may rename the destinations of inputs, for instance to avoid clashing, so long as the results are

consistent with [[−]]expr− and the store function.

Definition 10.5.16 — Storing. The store function implements variable stores.

store : seq Variablerc → Process

A store process is the inverse of a load process: the sequential composition of outputs on the var
channel for every variable in the given variable list.

store(v) def
= o

9 n : {x : v • x.name} • var.n.set!n→ Skip

A. Language changelog

This chapter lists changes in the RoboCert language (not the tool), in reverse chronological version
order.

A.1 This draft
Semantics changes

• Sequence memory processes now terminate when the rest of the sequence terminates, fixing
a semantic error.

A.2 Version 0.1 (2022-05-20)
Initial released version.

Credits

LATEX style based on the The Legrand Orange Book Template by Mathias Legrand and Vel from
LaTeXTemplates.com. Licensed under CC BY-NC-SA 3.0.

www.latextemplates.com
http://creativecommons.org/licenses/by-nc-sa/3.0/

Bibliography

[1] Marco Autili, Paola Inverardi, and Patrizio Pelliccione. “Graphical scenarios for specify-
ing temporal properties: An automated approach”. In: Autom. Softw. Eng. 14 (Sept. 2007),
pages 293–340. doi: 10.1007/s10515-007-0012-6 (cited on pages 31, 32).

[2] Matthias Brill et al. “Live Sequence Charts”. In: Integration of Software Specification Tech-
niques for Applications in Engineering: Priority Program SoftSpez of the German Research
Foundation (DFG), Final Report. Edited by Hartmut Ehrig et al. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2004, pages 374–399. isbn: 978-3-540-27863-4. doi: 10.1007/978-3-
540-27863-4_21. url: https://doi.org/10.1007/978-3-540-27863-4_21 (cited
on page 26).

[3] Werner Damm and David Harel. “LSCs: Breathing Life into Message Sequence Charts”. In:
Formal Methods Syst. Des. 19.1 (2001), pages 45–80. doi: 10.1023/A:1011227529550.
url: https://doi.org/10.1023/A:1011227529550 (cited on page 33).

[4] OMG Unified Modeling Language. Dec. 2017. url: https://www.omg.org/spec/UML/
2.5.1/PDF (cited on pages 10, 25).

[5] Øystein Haugen and Ketil Stølen. “STAIRS – Steps To Analyze Interactions with Refinement
Semantics”. In: «UML» 2003 - The Unified Modeling Language. Modeling Languages and
Applications. Edited by Perdita Stevens, Jon Whittle, and Grady Booch. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2003, pages 388–402. isbn: 978-3-540-45221-8 (cited on page 26).

[6] J. Baxter, P. Ribeiro, and A. Cavalcanti. “Sound reasoning in tock-CSP”. In: Acta Infor-
matica (Apr. 2021). doi: 10.1007/s00236-020-00394-3. url: https://eprints.
whiterose.ac.uk/174356/ (cited on page 61).

[7] Waldeck Lindoso et al. “Visual Specification of Properties for Robotic Designs”. In: Formal
Methods: Foundations and Applications. Edited by Sérgio Campos and Marius Minea. Cham:
Springer International Publishing, 2021, pages 34–52. isbn: 978-3-030-92137-8 (cited on
page 32).

https://doi.org/10.1007/s10515-007-0012-6
https://doi.org/10.1007/978-3-540-27863-4_21
https://doi.org/10.1007/978-3-540-27863-4_21
https://doi.org/10.1007/978-3-540-27863-4_21
https://doi.org/10.1023/A:1011227529550
https://doi.org/10.1023/A:1011227529550
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://doi.org/10.1007/s00236-020-00394-3
https://eprints.whiterose.ac.uk/174356/
https://eprints.whiterose.ac.uk/174356/

90 Chapter A. Language changelog

[8] Zoltán Micskei and Hélène Waeselynck. “The Many Meanings of UML 2 Sequence Diagrams:
A Survey”. In: Softw. Syst. Model. 10.4 (Oct. 2011), pages 489–514. issn: 1619-1366. doi:
10.1007/s10270-010-0157-9. url: https://doi.org/10.1007/s10270-010-
0157-9 (cited on page 25).

https://doi.org/10.1007/s10270-010-0157-9
https://doi.org/10.1007/s10270-010-0157-9
https://doi.org/10.1007/s10270-010-0157-9

	Introduction
	0.1 How to read this manual
	0.2 Running examples

	Part I — Core Language
	1 Core: metamodel
	1.1 Introduction
	1.2 Top-level
	1.3 Targets
	1.4 Values
	1.5 Assertions

	2 Core: textual syntax
	2.1 Conventions
	2.2 Top-level
	2.3 Targets
	2.4 Values
	2.5 Assertions

	3 Core: well-formedness
	3.1 Introduction
	3.2 General conditions
	3.3 Top-level
	3.4 Targets
	3.5 Values
	3.6 Assertions

	Part II — Sequence Notation
	4 Sequences: metamodel
	4.1 Introduction
	4.2 Interactions
	4.3 Interaction fragments
	4.4 Occurrences
	4.5 Messages
	4.6 Assertions

	5 Sequences: well-formedness
	5.1 Sequences
	5.2 Fragments
	5.3 Occurrences
	5.4 Messages
	5.5 Assertions

	6 Sequences: textual syntax
	6.1 Interactions
	6.2 Fragments
	6.3 Occurrences
	6.4 Messages
	6.5 Assertions

	Part III — Low-Level Language Interoperability
	7 CSP-M
	7.1 Metamodel
	7.2 Well-formedness conditions

	Part IV — Semantics
	8 Introduction
	8.1 How to read these chapters

	9 General Definitions
	9.1 Core language
	9.2 Sequence notation

	10 Timed Semantics: tock-CSP
	10.1 Relationship to the generator
	10.2 Note to the reader
	10.3 Dependencies on the RoboChart semantics
	10.4 Core language
	10.5 Sequence notation

	A Language changelog
	A.1 This draft
	A.2 Version 0.1 (2022-05-20)

	Credits
	Bibliography

