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1. Introduction

Recent advances in Engineering and Artificial Intelligence promise to have a transformative

impact on society, as robots become ubiquitous in homes, offices, and public spaces, providing

services to facilitate and enrich our lives. Development of software for robots operating in these

complex environments, however, is a challenge. Roboticists often have in mind restrictions on the

environment that must be satisfied for their robots to operate well: they make assumptions about

temperature, wind, layout of rooms, weight of the robot, and so on, for example. Rarely, however,

these operational restrictions are recorded precisely or at all. The usual code-centric approach

adopted in software development for robotics often leads to tests that take these restrictions into

account, but no record beyond the test base, if any, is normally produced.

Model-driven, as opposed to code-centric, software engineering has been widely advocated for

robotics [6]. Many domain-specific languages support modelling and automated generation of code

for simulation and deployment. A few have a formal semantics. The RoboStar framework1 [5] is

distinctive in that its design and simulation notations have semantics that can be automatically gen-

erated. It is provided using a state-rich hybrid version of a process algebra for refinement [22] cast

in Hoare and He’s Unifying Theories of Programming (UTP) [13] and formalised in Isabelle [21].

In using models for generation of tests and for verification by proof, we need to have a record

of assumptions about the environment. For example, tests generated from a model that does not

cater for environment assumptions may characterise invalid scenarios and be, therefore, useless. In

addition, properties of the system may depend fundamentally on assumptions of the environment.

For instance, a robot that starts too close to an obstacle may not be able to avoid it in time. An

1robostar.cs.york.ac.uk

robostar.cs.york.ac.uk
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account of operational requirements is, therefore, an important design artefact.

In this paper, we present and formalise RoboWorld, a controlled natural language for document-

ing operational requirements of a robotic system for use in simulation, test generation, and proof.

RoboWorld documents complement platform-independent design models by describing operational

requirements as assumptions about the environment. The RoboWorld requirements cover aspects

of the arena (that is, area) in which the robot is expected to work and of the robotic platform.

Modelling the environment of a service robot is not feasible due to its highly complex, often

dynamic and unpredictable, nature. On the other hand, it is feasible to record assumptions about

the environment [1], including the robotic platform. RoboWorld supports this practice by providing

an accessible and extensible English-based notation for roboticists.

In current practice, the starting point to identify operational requirements is the development and

use of simulation scenarios, if not of the actual program and platform. By recording requirements

in a RoboWorld document, however, we can then verify whether these assumptions are satisfied by

a simulation (model or code). In addition, we can generate or select tests that are guaranteed to be

meaningful. Finally, we can use the assumptions to prove properties of the system.

Generally speaking, natural language processing techniques can be statistical or symbolic [10].

Statistical approaches assume that a large dataset of (raw) text is available, from which techniques

such as machine learning extract processing rules by creating statistical models. Differently,

symbolic approaches typically rely on grammars to define rules for analysing and producing valid

text; these rules define a Controlled Natural Language (CNL).

While statistical approaches are more general, since they can process unrestricted text, inferring

the correct interpretation of the text is a challenge due to huge variety of writing styles. The

control imposed by symbolic approaches can make this inference process easier, since we restrict

ourselves to a controlled subset of styles. However, a challenge when defining a CNL is to achieve

a compromise between naturalness, expressiveness, and control.

RoboWorld is devised as a controlled natural language for the following two reasons. First,

as mentioned, operational requirements of robotic systems are frequently left implicit and, thus,

we do not have large datasets to develop statistical models. Second, the structure imposed by a

symbolic approach enables us to provide automatically a formal semantics for such requirements.

Nevertheless, RoboWorld is a natural, expressive and extensible language, yet controlled.

Tool support for RoboWorld is provided by RoboTool2. It includes facilities for (graphical)

modelling, validation, and automatic generation of mathematical models for existing RoboStar

notations and now also RoboWorld. It also automates test and simulation generation. Proof

automation relies on integration with model checkers [19, 23] and Isabelle/UTP [21].

2robostar.cs.york.ac.uk/robotool/

robostar.cs.york.ac.uk/robotool/
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In [3], we have provided an overview of the RoboWorld syntax, semantics, and tool support us-

ing a couple of examples. Here, we provide a comprehensive definition of the language: metamodel,

grammar, well-formedness conditions, and formal semantics, and the RoboTool mechanisation.

In terms of the semantics, we define an intermediate representation that ensures changes

to the concrete syntax do not affect directly the definition of the semantics. The intermediate

representation provides a syntax-independent basis to define the semantics and implement tools for

RoboWorld. A set of rules defines how an intermediate representation is generated for a RoboWorld

document. A second set of rules defines a mathematical semantics for RoboWorld documents

by specifying functions that map the intermediate representation to CyPhyCircus processes [18,

22]. CyPhyCircus is the hybrid state-rich process algebra used in the RoboStar framework.

Mechanisation of the two sets of rules allows automatic generation of CyPhyCircus models using

RoboTool.

In the next section, we give an overview of RoboChart [7], the RoboStar notation for software

modelling, to illustrate how RoboWorld can complement design models, and influence simulation,

testing, and proof. RoboWorld, however, is not tied to RoboStar notations, and can be used to

record and formalise operational requirements whether a RoboStar model is available or not.

Section 3 specifies the structure of RoboWorld documents: their abstract syntax via a metamodel,

with associated well-formedness conditions. As an example, we present a RoboWorld document

that captures the operational requirement of a firefighting UAV. The concrete grammar is defined

in Section 4 using the facilities of the Grammatical Framework, a special-purpose functional

programming language for developing and implementing controlled natural languages [10]. In

Section 5 we describe our intermediate representation for RoboWorld documents. Section 6

formalises the semantics. RoboTool support for RoboWorld is the object of Section 7. We conclude

and discuss future work in Section 8.





2. RoboStar framework

At the design level, a RoboWorld document complements (platform-independent) models of control

software. In the RoboStar framework, these are written using RoboChart, a timed state-machine

based notation with a specialised component model. Platform independence is achieved in this

context by writing models in terms of the services of the robotic platform required by the control

software. Services are described by events, operations, and variables provided by the platform;

these are abstractions for sensors and actuators, and associated embedded software.

RoboWorld documents can enrich a platform-independent software design by capturing how

features of the environment affect and are affected by the behaviour described by that design. This

is achieved by defining how elements of the environment affect or are affected by the values of the

variables, occurrences of events, and calls to operations used in the software.

How the software or simulation is described in terms of its required services is irrelevant to

the reader or writer of a RoboWorld document. To illustrate our ideas, however, we give a brief

overview of the RoboChart notation. For that we use a simplified model of a firefighting UAV

inspired on a challenge for an international robotics competition1. Figure 2.1 shows the drone.

RoboChart is a diagrammatic modelling language based on UML state machines, but embedding

a component model suitable for robotics and time primitives to capture budgets, timeouts, and

deadlines. In defining a RoboChart model, a key element is the block that specifies the services of a

robotic platform that are used by the control software. In Figure 2.2, the block named UAV inside

the block SimpleFireFighter is the robotic-platform block for our example.

1www.mbzirc.com/ - Challenge 3 in 2020.

www.mbzirc.com/
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1 RealSense D435i depth camera
& MLX90640 thermal camera

2 Nozzle attached to a two-axis gimbal

3 Arduino Nano for pump and gimbal control

4 1m Carbon fibre arm

5 3S LiPo Battery

6 10bar water pump.

7 Onboard computer, a Raspberry Pi 4

8 4L Water bag

9 DJI M600 UAV

Figure 2.1: Firefighting UAV

Figure 2.2: RoboChart module for a simplified firefighting UAV application

The model for the real firefighter drone defines 21 robotic-platform services. In our simpler

version, we have just five events and four operations. They are declared in interface blocks called

EmbeddedI and CommandsI on the right in Figure 2.2. The UAV block declares these

interfaces, making their events and operations available for use by the software. Here, the software

behaviour is defined by a single controller block called Planning. The block SimpleFirefighter is

an example of a RoboChart module, which can be used to define a platform-independent model for

the control software of a robotic system, using a robotic-platform block, and one or more controller

blocks.

The services of UAV include abstractions for a camera and associated image analysis software

in the form of events fireDetected and noFire. The event critical is an abstraction for a sensor

that indicates that the level of the battery is too low. The event spray abstracts an actuator that

turns on and off the water pump. The event landed represents flight-control sensors: IMU and

GPS, for example. Finally, the operations of our platform abstract navigation facilities of the flight

controller, which is able to follow trajectories to takeOff(), goToBuilding(), searchFire(), and

goHome().
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Figure 2.3: RoboChart state machine for our simplified firefighting UAV

The RoboWorld document that we present in the next section explains how all these services

declared in UAV are related to elements of the drone environment. So, that RoboWorld document

is associated with the RoboChart module SimpleFirefighter. These definitions are irrespective

of how the services of UAV are used in the controller Planning. For completeness, however,

we present in Figure 2.3 the RoboChart state machine Planner, which defines the behaviour of

Planning. In general, the behaviour of a controller can be specified by a collection of parallel state

machines. In the complete model of the firefighter, we have two controllers and nine machines.

In Planner, we have a state machine that is, by far and large, much like a UML machine. We

note a few points, though. First, there is a context at the top that declares the required or local

variables, events, and operations used in the definition of the state machines. In our example, the

interface CommandsI is declared as required (R). This means that a controller that uses this

machine needs to define these operations, or require them from the platform as it is the case here.

The interface EmbeddedI is defined (i), so the machine uses its events to input or output from or

to the controller and platform. Additionally, Planner declares three constants (π). They are used

only in Planner, but are parameters of the module as a whole, since their values are left undefined.

Here, these constants record time budgets and deadlines for the operations.

Second, in the actual machine defined in Planner, the initial junction (black circle marked with

an i) leads to the state TakeOff, whose entry action (executed when the state is entered) calls the

platform operation takeoff() and then pauses for between 1 and toTime time units. The pause is

defined using a RoboChart time primitive wait. It is used to specify time budgets: here, an interval

defining a range for the amount of time that might actually be needed for the drone to take off.

Finally, in the entry action of the state Spray (inside the composite state Mission), we have a

deadline sD on the entry action spray!true. This ensures that, once the fire is detected, the robot

starts the attempt to extinguish it no later than sD time units afterwards.

Like RoboWorld, RoboChart has a process-algebraic semantics based on CSP [11]. It uses
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the discrete-time variant of CSP called tock-CSP, whose denotational semantics is given in [16].

The RoboChart semantics is compatible with the semantics we provide here for RoboWorld, using

CyPhyCircus [18]. This is a hybrid process algebra that extends Circus [2], which itself combines

CSP with Z [17] for modelling abstract data types and operations. With a RoboWorld document

and its associated RoboChart model, we can reason about the robotic system as a whole.

We next describe the details of the RoboWorld language.



3. RoboWorld: overview and metamodel

In this section, we first give an overview of the structure of RoboWorld documents using the

example of the firefighting drone (Section 3.1). Next, in Section 3.2, we present a metamodel for

RoboWorld. Finally, Section 3.3 lists well-formedness conditions that must be satisfied by a valid

RoboWorld document, and that provide guidance to designers.

3.1 Document structure: overview

In this section, we give an overview of the RoboWorld syntax using the RoboWorld document for the

firefighting UAV, presented in Figures 3.1 and 3.2. As illustrated, a RoboWorld document includes

assumptions and mappings. Assumptions declare and restrict elements of the environment: they are

described in Section 3.1.1. The mappings define the services of an associated (RoboChart) design

model using the elements defined in the assumptions. We give more details in Section 3.1.2.

3.1.1 Assumptions

The assumptions are divided into sections to distinguish assumptions about the arena, about the

robot, and about (other) elements introduced in the assumptions about the arena. The first section,

labelled ARENA ASSUMPTIONS, captures assumptions over the arena as a whole: its dimension,

properties of the ground, if any, and, most importantly, presence of elements (obstacles, objects that

may be carried, a home or target region, and so on) besides the robot. The elements may be entities

that the robot may interact with or regions of the arena.
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## ARENA ASSUMPTIONS ##
The arena is three -dimensional.

The width of the arena is 50.0 m.

The depth of the arena is 60.0 m.

The arena has a floor.
The gradient of the ground is 0.0.

The arena has one building.

The height of the arena is the height of the building plus at least 1.0 m.

The arena has fires.

The arena has a home region.

The speed of the wind is less than 8.0 m/s.

It is not raining.

## ROBOT ASSUMPTIONS ##
The robot is a point mass.

Initially the robot is in the home region.

The robot has a tank of water.
The tank of water is either full or empty.

The robot has a searchPattern.
The searchPattern is a sequence of positions.

## ELEMENT ASSUMPTIONS ##
The building is a box.

The height of the building is not less than 6.0 m.
The height of the building is not greater than 20.0 m.

The width of the building is not less than 10.0 m.
The width of the building is not greater than 30.0 m.

The depth of the building is not less than 10.0 m.
The depth of the building is not greater than 40.0 m.

A fire can occur on the floor.
A fire can occur on the building from a height of 5.0 m to 18.0 m.

The width of the fires is 36.0 mm.
The height of the fires is 60.0 mm.
The depth of the fires is 0.0 mm.

The fires have a status.
The statuses of the fires are either burning or extinguished.

The home has an x-width of 1.0 m and a y-width of 1.0 m.
The home is on the ground.

Figure 3.1: Firefighter UAV RoboWorld assumptions

The assumptions in Figure 3.1 state that the arena is three-dimensional with a flat ground (gra-

dient 0.0). The arena is not assumed to have a floor; for instance, for a drone, the existence of a

floor may not be relevant. The arena has a floor if, and only if, it is explicitly said, as in Figure 3.1,

or if the gradient of the ground is defined. So, in Figure 3.1, the declaration of the floor can be

removed.

Two types of entities are declared in Figure 3.1: building and fire. The sentences that declare

these entities indicate that there is a single building, but there may be none, one, or many fires.

There is also a region called home. The regions share the same dimensionality of the arena,

unless we say otherwise. In addition, the arena and its regions are open, unless explicitly indicated

to be closed. So, regions do not block movement, unless otherwise stated.

Another entity often declared is obstacle. For instance, the arena assumptions for a foraging
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robot may declare obstacles as shown below. Entities are assumed to block movement.

Example 1

The arena has obstacles. �

In our example, we provide in separate sentences exact measurements for the width and depth of

the arena, as described for the competition. These measurements can, however, be left unspecified,

in which case the arena is finite, but the actual values of its dimensions are unbounded. For instance,

in the example, the exact height of the arena is not specified. Another sentence provides a lower

bound, based on the height of the building, which is an element previously declared.

Finally, in Figure 3.1 two sentences give properties related to the wind and rain. These are

primitive concepts of RoboWorld. By default, the environment does not have any wind or rain.

Arena assumptions are optional. If not included, the implicit assumption is a three-dimensional

arena, of finite, but unbounded size, without floor, and that contains just the robot.

ROBOT ASSUMPTIONS are compulsory. We need to define the assumptions about the shape of

the robot. It can, however, be defined to be a point mass if the shape of the robot is not important as

far as the assumptions we make about its interactions with the world are concerned. We can also

define initial location, elements, and capabilities of the robotic platform. The ability to move is a

feature of every robot; they all have a pose (position and orientation), velocity, and acceleration.

If the initial pose of the robot is not defined, the robot can start in any pose in the arena.

For the firefighting drone, we declare a tank of water as a robot element. After the introduction

of such an element, we can also indicate relevant information that can be recorded about it; here,

a separate sentence indicates that the tank of water can be full or empty. Another element of the

robot is the searchPattern. This is information held by the robot, rather than a physical element.

The declaration gives it type, namely, a sequence of positions.

Several other examples are available1, and some take advantage of this facility to declare

relevant elements of the robot. For instance, requirements for the foraging robot include the

following.

Example 2

The robot may carry one object.

The robot has an odometer. �

In this case, elements called objects need to have been declared in the arena assumptions. Odometer

is part of the RoboWorld vocabulary, and captures information related to the robot movement.

It is possible to write a detailed description of the robot shape entirely in English. This involves

1robostar.cs.york.ac.uk
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defining components of the robot, their shapes (boxes, spheres, cylinders, and so on), and their

poses. If such a description becomes unwieldy, however, it may be better to use a (block) diagram.

In RoboStar, physical models for use in simulation can be specified using RoboSim [4, 9].

These models describe specific robotic platforms and scenarios for a simulation using specialised

block diagrams and differential equations. In contrast, RoboWorld documents specify properties

that must be satisfied by RoboSim models, called p-models, in the case of platform models, and

s-models, in the case of scenario models. If, however, a detailed physical model for the robot or

any other element of the arena is useful, a p-model component can be included.

In this paper, however, we focus on the facilities for descriptions in English. The use of

diagrams in RoboWorld is not required, but is provided as an extra resource.

The ELEMENT ASSUMPTIONS describe properties of elements declared in the ARENA ASSUMPTIONS.

We can constrain their shapes, dimensions, and locations, for example. These can be specific or

underspecified. In our example, for instance, we define a range for the dimensions of the building,

we define specific values for the dimensions of a fire, and we define that the home region is on the

ground, but do not say specifically where on the ground.

In the competition set up, a fire was simulated by a heat plate with a hole for the water. We do

not capture here some information that makes sense only for the environment especially set up for

physical testing, such as the hole in the middle of the fire. We, however, provide size information.

Here, we use millimetres, rather than metres. RoboWorld accepts all SI units and their prefixes.

3.1.2 Mappings

Up to four sections of a document contain mapping definitions: for INPUT EVENTS, OUTPUT

EVENTS, OPERATIONS, and VARIABLES. These describe how the robotic-platform services of an

associated (RoboChart) design model affect and are affected by the environment.

In Figure 3.2 we have mappings for four INPUT EVENTS: fireDetected, noFire, critical,
and landed. The mappings determine conditions that characterise the scenarios in which the input

events occur. In the conditions, we can refer to properties of the arena, of the robot, and of elements

of the arena. In our example, we refer to a property distance related to the robot and fires in defining

fireDetected and noFire, for instance. To define landed we refer to the position of the robot.

The event critical is characterised by time conditions, in relation to occurrences of an output

event, namely, spray, and calls to the operation takeOff.

The mappings for OUTPUT EVENTS describe their effect on the environment when they occur.

Similarly, the mappings for OPERATIONS describe their effect when they are called. For the foraging

robot, if the ROBOT ASSUMPTIONS declare that the robot has an odometer, and we have an output

event resetDist to abstract functionality related to the odometer, then the mapping for this event
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## MAPPING OF INPUT EVENTS ##
When the distance from the robot to a fire is not greater than 0.5 m, the event fireDetected occurs.

When the distance from the robot to a fire is greater than 0.5 m, the event noFire occurs.

When the occurrence of the event spray was 3 minutes before or the occurrence of the operation takeOff was 20
minutes before , the event critical occurs.

When the z-position of the robot is 0.0, the event landed occurs.

## MAPPING OF OUTPUT EVENTS ##
When the event spray occurs , if the tank of water is full , then the effect is defined by a diagram where one

time unit is 1.0 s.

## MAPPING OF OPERATIONS ##
When the operation takeOff is called , the velocity of the robot is set to 1.0 m/s upwards.

When the operation goToBuilding is called , the velocity of the robot is set to 1.0 m/s towards the building.

When the operation goHome is called , the velocity of the robot is set to 1.0 m/s towards the home region.

The operation searchFire () is defined by a diagram where one time unit is 1.0 s.

Figure 3.2: Firefighter UAV RoboWorld mappings

can be as follows. As said, odometer is one of the sensors regarded as a primitive concept in

RoboWorld.

Example 3

When the event resetDist occurs, the odometer is reset. �

For a drone, we may have an event land to abstract functionality of the autopilot. The mapping in

this case can be as shown below, where we refer to the velocity of the robot.

Example 4

When the event land occurs, the velocity of the robot is set to 1.0 m/s downward.

�

The effect of an output event or operation may be conditional. In the firefighter example, the effect

of the output event spray is conditioned to the status of the tank of water being full. It changes the

environment by extinguishing fires and changing the status of the tank of the robot to empty. This

is defined by a state machine, shown in Figure 3.3.

As for the p-model block diagrams, state machines are provided as a resource to define mappings

if their English description might be too complex. Typically, if the effect of an output or operation

involves loops over a set of elements or takes time, using a state machine to define it may be simpler

than giving an English description.

The notation to describe state machines is similar to that of RoboChart. In a RoboWorld

machine, however, we can use events to set and get the position, orientation, velocity, and

acceleration of the robot, and other declared properties of elements of the arena and robot. This is

in addition to the event defined by the mapping. We can also require variables (and constants).

The state machine for an output event is named after that event. In our example, the machine is

spraymapping(). Figure 3.3 shows on the right the declaration of spray. On the left, we declare
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Figure 3.3: Firefighter UAV RoboWorld - mapping for spray

Figure 3.4: Firefighter UAV RoboWorld - mapping for searchFire()

the events to set and get properties of the robot and of the fires. Their type declarations uses

record types RobotProperty and FireProperty that reflect implicit attributes related to pose, for

example, and the declarations of components of the robot and of a fire. For instance, for the robot,

a field tank of water has an enumeration type RobotTank of waterType containing values

empty and full. Similarly, FireProperty has a field status whose type has values burning and

extinguished.

If the arena may have several instances of an element, the corresponding set and get channels

communicate sequences of the record type that characterises the element. For instance, in Figure 3.3,

the type of setFires is a sequence of FireProperty. In addition, we have channels to get and set
a particular element in such a sequence. The type of setFire in Figure 3.3 is a pair (constructor

*), whose first element is an index in the sequence of fires, and whose second element is a

FireProperty.

As mentioned, the machine defines the behaviour following the occurrence of the output event.

In the example in Figure 3.3, the machine is at first in a state Ready, waiting for the occurrence

of a spray event. In accordance with its declaration, the event spray takes a boolean b as

input (spray?b). This is an output produced by the software (see Figures 2.2 and 2.3), and so an

input of the mapping that defines its effect on the environment. The variable b is declared locally. If

b is true, then the machine moves to the composite state Spraying. Otherwise, it stays in Ready.
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In the entry action of Spraying, the events getRobot and getFires are used to record the

properties of the robot and a sequence of properties of fires in local variables pr and pf. Finally,

a local index indexF is initialised to 1, and a local boolean variable spraying, which records

whether the fires close and in front of the robot still require spraying, is set to true.

Whether more spraying is required is defined by the time that the robot has been spraying. A

required interface sprayData declares a constant tSpr defining the amount of time to spray. In

Spraying, in the transition from its initial junction, after tSpr time units have passed (wait(tSpr)),
spraying is set to false. At this point, the behaviour of the machine of Spraying cannot be

interrupted, as it records the effect of the spraying. So, the transition out of Spraying that occurs if

the event spray occurs is disabled by the guard spraying == false.

The state machine in Spraying defines a loop, where the status of each fire identified by

indexF, that is pf[indexF], is checked. If it is burning and its distance to the robot is less than

3.0 m, then the machine moves to a state Extinguishing. The function distance, whose definition

we omit, uses the pose of the robot recorded in pr„ and of the fire, in pf[indexF] to determine

the distance between them. (A fire that is not in front of the robot is considered very far by this

function.)

The entry action of Extinguishing uses setFire to update the status of the fire identified by

indexF to extinguished. A transition out of Extinguishing increments indexF and leads to

the decision junction for the loop. If pf[indexF] is extinguished or too far from the robot, then

the only action is the indexF increment. When all fires have been considered, the tank of water is

updated to empty.

The mappings can also use intrinsic properties of the robot, such as its velocity and acceleration.

In our example, the operations takeOff, goToBuilding, and goHome all affect the robot’s

velocity.

The mapping for the operation searchFire() is specified by the diagram shown in Figure 3.4.

The state machine for searchFire() indicates that the robot moves to each waypoint recorded

in searchPattern in sequence. This is achieved by setting the robot’s position, using the event

setPos, to the next waypoint in searchPattern (setPos!(searchPattern[indexSP])). The

value of indexSP is initialised to 1 upon its declaration in the interface searchData. A less

strong abstraction would set the robot’s velocity and acceleration. Since, however, in this example

the focus is on the mission of the drone, namely, fighting fires, rather than on its mobility, this

abstraction is useful.

In any case, the amount of time units defined by the constant tWP is required to pass before

indexSP is incremented and the robot moves to the next waypoint. The guard of the self-transition

of the state Go, that is, sinceEntry(Go) > tWP, holds after tWP time units since the state Go
is entered. At that moment, the transition is enabled and immediately taken. Once all waypoints
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Figure 3.5: RoboWorld metamodel: top classes

have been visited (indexSP > size(searchPattern(indexSP))) then the operation searchFire()
finishes.

Before finishing, searchFire() may be interrupted (see Figure 2.3), in which case the robot

starts spraying until the fire is no longer in sight. When the operation searchFire() is called

again, the drone continues to the next waypoint. (In the real drone, an extra operation stops the

drone before spraying. We omit it here as it does not add to the objective of illustrating the use of

RoboWorld.)

The final section contains the MAPPING OF VARIABLES of the robotic platform. It is empty

for the firefighting UAV, since there are no robotic platform variables in its model. Variables can be

used as inputs to the software, and so their definitions are similar to those for input events.

We now specify the metamodel and well-formedness conditions for RoboWorld documents.

3.2 Metamodel

Figure 3.5 presents a diagram including the top-level classes of the RoboWorld metamodel. A

RoboWorld document is an element of the class RWDocument. It is formed by a sequence of

zero or more objects of the classes for each of the assumption and mapping groups.

The assumptions and mappings are defined in terms of sentences, defined by the class RWSen-
tence representing the forms of sentences allowed in RoboWorld, and Conditions, which are

RWSentences prefixed by a subjunction. RWSentences are specified in terms of categories the

English language: Noun, Adjective, Adverb, and so on.

An ArenaAssumption is defined by a sentence. As said, a RobotAssumption can

be defined by a sentence, as represented by the subclass RobotSentence, or by a p-model,

represented by the class RobotPModel. The attribute pmodel of RobotPModel has type

PModel. This is a class in the RoboSim metamodel2 that represents a specialised form of block
2robostar.cs.york.ac.uk/publications/techreports/reports/physmod-reference.pdf

robostar.cs.york.ac.uk/publications/techreports/reports/physmod-reference.pdf
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Figure 3.6: RoboWorld metamodel: inputs and outputs

diagrams that can be used to describe the links, joints, sensors, and actuators of a robot.

Here, we do not discuss block diagrams any further, but note that a PModel may have some

parameters (representing sizes of rigid bodies, for example) which may be instantiated when used in

a RoboWorld document. The class Instantiation, used to give type to the attribute instantiations
of RobotPModel, is also in the RoboSim metamodel. Like the semantics of RoboWorld presented

here, the semantics of a RoboSim PModel is also given in CyPhyCircus, so it integrates well.

Like a RobotAssumption, an ElementAssumption can be a sentence (ElementSen-
tence) or a p-model (ElementPModel). In this case, however, our metamodel indicates that the

name of the element is an Item as defined in Figure 3.7: the block diagram is for the element

declared in the arena assumptions whose name is that Item. In the case of a p-model for the robot,

the name is just robot.

The mappings all have a name, except for an OperationMapping, which has a signature,

including a name and a list of parameters. The types of the parameters do not need to be

defined, since they are already declared in the associated RoboChart model.

The name of an InputEventMapping identifies the input event being defined. In addition,

it has information given by an input that characterises when that event can take place and, if

relevant, that defines the values input. In Figure 3.6 we define the class Input as an abstract class

with three concrete subclasses: InputSometimes, InputAlways, and InputNever.

In Figure 3.2, the input mappings for fireDetected, noFire, and landed all represent an

element of InputSometimes, with an attribute conditions. In each case, the subjunction in

conditions is “when”, and sentences, such as “the distance from the robot to a fire

is not greater than 0.5 m”, define when the event occurs. In these examples, however, the

InputSometimes instance itself has no sentences. We provide below more examples, where

we distinguish in bold face the keywords of RoboWorld. In italic, we distinguish the names of the

events being defined.

In the example below, in an input mapping for an event with name angularSpeed, we use

an element of InputAlways indicated by “is always available”. We can also write “is always

enabled”, “can always happen”, and so on. The concrete syntax identifies the possibilities (see



26 Chapter 3. RoboWorld: overview and metamodel

Section 4).

Example 5 The event angularSpeed is always available and it communicates the angular

velocity of the robot. �

In this example, the value of sentences in InputAlways is the RWSentence “it commu-
nicates the angular velocity of the robot” introduced by the “and”. We assume that

angularSpeed is declared in the RoboChart robotic platform to have type real, so we use an

RWSentence to define the value communicated by the input: the angular velocity of the robot,

which is a pre-defined property.

The keyword “and” is a separator used when we have a definition for sentences to follow.

Use of an RWSentence is valid only when the event has a type, and so communicates values. If an

event has a type, but no RWSentence is used to define the input value, that value is unconstrained.

In the next example of an InputMapping for an event transferred, the Input is an instance of

InputNever as indicated by “never happens”. In this case, the input event never takes place, and

so we do not need to include an RWSentence to characterise input values.

Example 6 The event transferred never happens. �

The InputNever instances are useful for abstraction. An example of where the mapping in

Example 6 is useful is provided by one of our case studies3: a robot from a swarm that can transfer

objects to another robot. A sensor tells when the transfer has taken place. In the initial simulation

we have targetted, there is a single robot, so this part of the functionality is left out.

The output of an OutputEventMapping or of an OperationMapping can be defined in

one of two ways: in English or diagrammatically (see Figure 3.6). It can be described in English

using, optionally, Conditions, and some RWSentences. The concrete subclasses of Output
called OutputSometimes, OutputAlways, and NoOutput are similar to InputSometimes,

InputAlways, and InputNever, but define Outputs. For instance, in Example 3, the Out-
putMapping is for an event resetDist, whose output is an instance of OutputAlways. There

is no condition, but just an RWSentence.

An output, however, may be defined to have no effect, for the sake of abstraction. In this case,

we use an instance of NoOutput as illustrated below.

Example 7 When the operation Transfer() is called, nothing happens. �

The use case here is the same as that for the Example 6. We use this mapping to block the operation

Transfer() when simulating a single robot from a swarm.

An output defined in a mapping by a diagram for a state machine is an instance of Diagram-

3robostar.cs.york.ac.uk/
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Figure 3.7: RoboWorld metamodel: sentences and item phrases

maticOutput. We refer to Figure 3.2, where we find the mapping for the event spray. Its effect is

conditioned on the robot having a full tank of water. So, like in an instance of OutputSometimes,

an attribute conditions records that restriction, namely, “if the tank of water is full”.

The state machine itself shown in Figure 3.4 is an instance of the class RCOperation from the

RoboChart metamodel that defines the value of opd in the instance of DiagrammaticOutput.
As illustrated, the diagrammatic definition is principally a state machine that defines the operation

(or output) using the RoboChart notation. To support the definition of the state machine, we may

need extra diagrams, like the interface used in Figure 3.2 to declare the variables required by the

operation.

We recall that, as part of the mapping, we also define the value of the time unit. This is

recorded in sizetu, whose type RCIntegerExp is a class of the RoboChart metamodel for integer

expressions.

As mentioned before, the definitions of assumptions and mappings rely of RWSentences.

Instances of RWSentence can represent a significant subset of the English sentences. Section 4

gives the details; the specification of RWSentence is not domain specific and is not further

discussed in this section. As indicated in Figure 3.7, however, the definition of RWSentence
depends on that of an ItemPhrase, which we present in Figure 3.7 and describe in what follows.

An ItemPhrase identifies an element of the environment; it is a restricted form of noun phrase,

a concept of the English grammar. ItemPhrase has five direct subclasses. An ItemPhrase can

be very concise, just a pronoun, represented by an instance of the class PronounIP. Its attribute

pronoun is of a type Pronoun. We do not further discuss or define classes that correspond

directly to categories of the English language, such as Pronoun, Adverb, and so on.

Another simple form of ItemPhrase is an instance of FloatLiteralIP, which is just a number.

It has an attribute value of type Float whose default value is 0.0.
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Other forms of ItemPhrases are constructed using a Determiner, in the case of the subclass

DeterminerIP, or a Quantifier, in the case of QuantifierIP. The terms that can determined or

quantified are called Items, which can be basic or compound.

Example 8 A possible pronoun is “it”. In “the angular velocity”, we have a

determined ItemPhrase created from the determiner “the” and the BasicItem “angular

velocity”. Finally, in “1.0 rad/s upward”, we have a quantified ItemPhrase created

from number 1 and CompoundItem “rad/s upward”. �

A BasicItem can be an instance of one of three classes: NounBI, representing a Noun, UnitBI,
representing a unit, or a QualifiedBI, which qualifies a basicitem using an Adjective.

Example 9 Examples of BasicItems are “velocity”, “angular velocity”, and “m/s”.

�

The notion of a CompoundItem allows the grouping of Items or ItemPhrases connected via

a Preposition or modified by an Adverb, without creating ambiguity in the grammar. Every

CompoundItem refers to an item. A CompoundItem can add a preposition, in the

case of the subclass PrepositionCI of CompoundItem, to relate and item to one or more

ItemPhrases. In the case of the subclass AdverbCI, the CompoundItem adds an adverb.

Example 10 In the AdverbCI “m/s upward”, we have the BasicItem “m/s” followed

by the Adverb “upward”. In the PrepositionCI “distance from the robot to the

nest”, we have the BasicItem “distance” followed by the Preposition “from” and

an ItemPhrase “the robot to the nest”. The latter is a DeterminedIP that contains

a PrepositionCI "robot to the nest", itself another PrepositionCI. �

In Section 4, we describe a grammar that justifies the use of English sentences to describe instances

of our metamodel. Not every instance of our metamodel, however, represents a valid RoboWorld

document. So, we now present the well-formedness conditions that must be satisfied by an instance

of the metamodel for a RoboWorld document.

3.3 Well-formedness conditions

Besides the expected restrictions of the English grammar, there are some general well-formedness

conditions that need to be enforced. For example, the use of measurement units must be consistent

with the relevant physical quantity. For instance, length (distance, x-width, y-width, z-width, width,

depth, or height) must be measured in meters or its prefixes. Time must be measured in units

derived from seconds, and so on. These general restrictions are a form of well-typedness rules, and

can be naturally enforced using the intermediate representation described in Section 5.

In this section, we concentrate on domain-specific well-formedness conditions related to the

RoboWorld concepts, and the relationship between RoboWorld documents and RoboChart models,
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Table 3.1: Well-formedness conditions of RoboWorld

RW1 The values “arenas” and “robots” are not valid for the attribute noun of a BasicBI.
RW2 The names in the InputEventMappings, OutputEventMappings, and Vari-

ableMappings must be precisely those of the input events, output events, and variables
of the robotic platform in the associated RoboChart module.

RW3 The names in the signatures of the OperationMappings must be precisely those
of the operations of the robotic platform in the associated RoboChart module.

RW4 The parameters in the signature of an OperationMapping must be precisely
those (the same number, order and name) of the operation of the robotic platform in the
associated RoboChart module.

RW5 The name of the pmodel in a RobotPModel is “robot”.
RW6 The name of the pmodel in an ElementPModel matches the value of its name.
RW7 In the input of an InputEventMapping for an event that is typeless in the associated

RoboChart module, there are no sentences.
RW8 The sentences that define a DiagrammaticOutput must define a unit of time.
RW9 If the name of an OutputEventMapping is n, and its output is a Diagrammati-

cOutput, then the name of the RCOperation in opd is nmapping.
RW10 If the name of an OutputEventMapping is that of an event that has a type T in

the associated RoboChart module, and the output of the OutputEventMapping
is a DiagrammaticOutput, then the signature of its RCOperation in opd has a
parameter of type T.

RW11 The signature of an OperationMapping whose output is a DiagrammaticOut-
put matches the signature of the RCOperation in opd.

if applicable (since RoboWorld can be used in conjunction with other design notations or even on

its own). The conditions are presented in Table 3.1. In the next sections, we present additional

well-formedness conditions. In Section 4, we present restrictions related to the vocabulary used in

RWSentences. In Section 5, we present restrictions related to pre-defined terms (such as “linear

velocity of the robot”) and to a form of well-typedness and scope of expressions (such as

references to position should be consistent with the dimensionality of entities and regions).

If the RoboWorld document includes diagrams, for p-models or state machines, then they must

also satisfy the well-formedness conditions defined in RoboSim and RoboChart [8, 9].

Here, RW1 is a well-formedness condition that indicates that presently RoboWorld considers

single-robot applications, involving a single arena. Dealing with multiple robots requires little or

no further work in terms of the grammar (see the next section) or intermediate representation (see

Section 5). On the semantics, the impact is more significant. As for the restriction to a single arena,

it is of little consequence, given that an arena can have several regions.

RW2-4 are concerned with the association between a RoboWorld document and a RoboChart

module. In short, as indicated already, the mappings in the RoboWorld document must be for

exactly the platform services defined in the corresponding RoboChart model. It is those services

that define how the robot can perceive and affect the environment.
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The name of a p-model used in a RoboWorld document must be consistent with the name used

in the document. It is either just “robot” in the case of a p-model for the robot (RW5), or the name

of the element being described by the p-model (RW6).

We recall that the sentences of an Input are used to define the values sent to the software

based on the environment elements and their statuses. So, RW7 ensures that these sentences are

present only if the input does require a value: it has a type.

The remaining RW8-11 ensure compatibility between the RoboWorld document and any state-

machine diagrams to which it might refer. RW8 ensures that the RoboWorld document defines

the value of the time unit. RW9-10 ensure that the name used in the RoboWorld document is

that in the diagram, but we note that the diagram for an event n, such as spray, is supposed to

be nmapping (spraymapping, in our example), to avoid conflict with the name of the event.

RW11 ensures that, for operation mappings, the whole signature, not only the name, matches.



4. RoboWorld: realisation in the Grammatical Framework

As previously mentioned, the concrete syntax of RoboWorld is defined using the Grammatical

Framework (GF) [10]. Along with the Resource Grammar Library (RGL), it provides native

support for inflection paradigms (for example, singular and plural forms), as well as agreement

between elements of a sentence (for instance, the subject-verb number agreement), for more than

35 languages.

In the following sections, we detail how the RoboWorld metamodel is realised by grammars

in GF. In Section 4.1, we present an overview of our approach. Before getting into details,

in Section 4.2, we present background material on GF and RGL. In Section 4.3, we present

the lexicon of RoboWorld and explain how it can be extended. The basic building blocks of

a RoboWorld sentence are ItemPhrases, which are discussed in Section 4.4. Afterwards, we

describe how sentences can be written, considering different writing structures (Section 4.5),

tenses, and polarities (Section 4.6). Finally, we address the writing of assumptions and mapping

definitions (Section 4.7).

4.1 RoboWorld in GF: overview

In GF, we have a notion of module, which may describe an abstract or concrete grammar, but also

helper functions. Modules with helper functions are called resource modules. Abstract and concrete

grammars can extend other abstract and concrete grammars, and concrete grammars implement

abstract ones. Additionally, resource modules can be opened, that is, imported, by other modules.

Figure 4.1 shows the structure of our realisation of the RoboWorld metamodel in GF, indicating
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Figure 4.1: Architecture of RoboWorld realisation in GF

also how RoboWorld GF modules relate to the RGL of GF. In this figure, a module is represented

as a box, whereas (to be more succinct) a collection of RGL modules is depicted as a dashed box.

The RoboWorld metamodel presented in the previous section is realised by the abstract grammar

called RoboWorld, which encodes the previously discussed structure. The concrete grammar

RoboWorldEng describes how sentences in English correspond to elements of the metamodel.

In Figure 4.1, the collections of RGL modules used in our realisation of RoboWorld are shown

on the left and on the right. RGL is concerned with morphology and syntax rules of languages. The

RGL abstract grammars that we use, shown on the left in Figure 4.1, cover terms such as noun

phrases and clauses, for instance, which are common to many languages. On the right, Figure 4.1

shows RGL modules that implement the abstract modules in the English language.

In the middle box in Figure 4.1, we show the grammars that we have defined specifically for

RoboWorld. As indicated above, RoboWorldEng implements the grammar RoboWorld, and they

both extend a lexicon (RoboWorldLexicon in the case of the abstract RoboWorld grammar, and

RoboWorldLexiconEng for the concrete RoboWorldEng). The grammars RoboWorldLexicon

and RoboWorldLexiconEng define the RoboWorld lexicon, that is, vocabulary. All these grammars

use RGL grammars to cater for general concepts. They can be found in Appendix A.

The RoboWorld lexicon contains words that are common to the specification of robotic systems,

such as arena, robot, orientation, velocity, three-dimensional, among others. Currently,

the RoboWorld lexicon comprises more than 100 words. The abstract version of the lexicon

(RoboWorldLexicon) defines the grammatical classes of these words (for instance, robot is a

noun, one-dimensional is an adjective), but it does not give their spelling.

The concrete lexicon of RoboWorld (RoboWorldLexiconEng) implements the abstract one

considering the English language, and its particularities, by extending the RGL support for English.

For instance, Modern English largely does not have grammatical gender, which would require all

nouns to have masculine, feminine, and neutral inflections. Therefore, when defining a noun in
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RoboWorldLexiconEng, it suffices to provide the spellings of the singular and plural inflections.

The separation between abstract and concrete grammars, along with the support provided by RGL,

allows us to provide concrete implementations for RoboWorld considering other languages (and

their particularities), such as Portuguese, French, and others. As said before, RGL takes into

account more than 35 different languages. Here, we restrict ourselves to the English language.

The RoboWorld grammar extends the RoboWorld lexicon, and defines the abstract structure

of sentences (for example, sentences in the passive or active voice, or in the present or past

tense, and so on) that we can write to specify assumptions and mappings. The concrete grammar

RoboWorldEng implements RoboWorld observing the rules that apply to the writing of sentences

in English.

Before presenting the details of the grammars, we provide next an overview of GF.

4.2 Background on the Grammatical Framework

In GF, grammars are normally defined using functions to cater for context-sensitive languages. We

illustrate the main features of GF using a toy version of RoboWorld (called ToyRoboWorld). In this

toy language, we can write clauses about robots and wheels, using exclusively the verb to have.

Example 11 The following clauses are valid in ToyRoboWorld: “the robot has

a wheel”, “the robot has wheels”, “the robots have wheels”. �

In Listing 1, we define the abstract grammar of ToyRoboWorld. The starting symbol (category)

of the language is Clause (see Line 2). The terminals and non-terminals (called categories) are

defined on Lines 4–6. The lexicon comprises determiners (in singular and plural forms), two nouns

and one verb (see Lines 8–11). To finish, on Lines 13-16, we define how clauses can be created

from the other categories using functions. The function mkNounPhrase makes a noun phrase from

a determiner and a noun; mkVerbPhrase makes a verb phrase from a verb and a noun phrase, and

mkClause defines that a clause encompasses a noun phrase and a verb phrase.

The concrete grammar of ToyRoboWorld, called ToyRoboWorldEng and shown in Listing 2,

defines how to implement the aforementioned abstract concepts in English, covering expected

spellings and grammatical rules. To do this, we define two parameter types (Number and VerbForm)

to capture simplified notions of number and verb forms in English (Lines 3–5).

In GF, the implementations of abstract definitions are called linearisations. On Lines 7–13, we

provide linearisations for the categories of ToyRoboWorld. A Determiner and a NounPhrase are

implemented as records with two fields, s and n, storing the spelling (as a string, that is, a value of

the GF type Str) and the number information. A Noun is a record with a single field s, defined as a

table from Numbers to Strings. Similarly, Verbs are records in which the field s is a table from

VerbForms to Strings. Tables are similar to functions, but their arguments must be of a parameter
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1 abstract ToyRoboWorld = {
2 flags startcat = Clause ;
3 -----------------------------------------------------------------------------
4 cat -- categories
5 Determiner ; Noun ; Verb ;
6 NounPhrase ; VerbPhrase ; Clause ;
7 -----------------------------------------------------------------------------
8 fun -- lexicon
9 a_SgDeterminer : Determiner ; a_PlDeterminer : Determiner ;

10 the_SgDeterminer : Determiner ; the_PlDeterminer : Determiner ;
11 robot_Noun : Noun ; wheel_Noun : Noun ; have_Verb : Verb ;
12 -----------------------------------------------------------------------------
13 fun -- functions
14 mkNounPhrase : Determiner -> Noun -> NounPhrase ;
15 mkVerbPhrase : Verb -> NounPhrase -> VerbPhrase ;
16 mkClause : NounPhrase -> VerbPhrase -> Clause ;
17 }

Listing 1: Abstract grammar of ToyRoboWorld

1 concrete ToyRoboWorldEng of ToyRoboWorld = {
2 -----------------------------------------------------------------------------
3 -- parameters
4 param Number = Sg | Pl ;
5 param VerbForm = VPresent Number ;
6 -----------------------------------------------------------------------------
7 lincat -- categories
8 Determiner = {s : Str ; n : Number} ;
9 Noun = {s : Number => Str} ;

10 Verb = {s : VerbForm => Str } ;
11 NounPhrase = {s : Str ; n : Number} ;
12 VerbPhrase = {v : Verb ; np : NounPhrase} ;
13 Clause = Str ;
14 -----------------------------------------------------------------------------
15 lin -- lexicon
16 a_SgDeterminer = {s = "a" ; n = Sg} ;
17 a_PlDeterminer = {s = "" ; n = Pl} ;
18 the_SgDeterminer = {s = "the" ; n = Sg} ;
19 the_PlDeterminer = {s = "the" ; n = Pl} ;
20 robot_Noun = {s = table {Sg => "robot" ; Pl => "robots"}} ;
21 wheel_Noun = {s = table {Sg => "wheel" ; Pl => "wheels"}} ;
22 have_Verb = {s = table {VPresent Sg => "has" ; VPresent Pl => "have"}} ;
23 -----------------------------------------------------------------------------
24 lin -- functions
25 mkNounPhrase det noun = {s = det.s ++ (noun.s ! det.n) ; n = det.n} ;
26 mkVerbPhrase v np = {v = v ; np = np} ;
27 mkClause np vp = np.s ++ (vp.v.s ! (VPresent np.n)) ++ vp.np.s ;
28 }

Listing 2: Concrete grammar of ToyRoboWorld
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type (param). A VerbPhrase is also a record combining a verb (v) and a noun phrase (np).

On Lines 15–22, we define the linearisation of the lexicon of ToyRoboWorldEng. This is the

place where we provide their English spelling. These definitions take into account the inflections.

For instance, we provide the singular and plural forms of nouns (Lines 20 and 21) and verbs (Line

22).

Lines 24–27 give the linearisations for the other functions. When creating a noun phrase

(Line 25), its number information is inherited from the associated determiner (n = det.n). More-

over, the string representation of the noun phrase enforces agreement between the determiner and

the noun. This string is created by concatenating (++) the determiner with the inflection form

of the noun that shares the same number of the determiner; noun.s ! det.n yields a string

containing the inflection form of the noun whose number information is given by det.n. We recall

that noun.s is a table, a construct similar to a function; the symbol ! denotes table (function)

application in GF.

Example 12 In ToyRoboWorld, the following NounPhrase is not valid: “a wheels”. In this

example, the number information of the determiner “a” is n = Sg (see Line 16 in Listing 2), and

“wheels” is the inflection form associated with number Pl (see Line 21 in Listing 2). According

to the function mkNounPhrase, when creating noun phrases, the noun should be linearised with

the inflection form that matches the number of the determiner (noun.s ! det.n). Therefore, in

such a situation, we should read instead “a wheel”, since wheel is the inflection form associated

with Sg. �

For a verb phrase, on Line 26, we just collect the verb and the noun in a record. Finally, when

creating clauses, we enforce agreement between the noun phrase and the verb (Line 27). The clause

is the String obtained from the concatenation of three strings: (1) np.s – the representation of the

noun phrase, (2) vp.v.s ! (VPresent np.n) – the representation of the inflection form of the

verb (vp.v.s) that is in the VPresent tense and that shares the same number of np, (3) vp.np.s –

the representation of the noun phrase embedded in the verb phrase.

The Resource Grammar Library

As mentioned, RGL is the standard GF library; it covers a morphological and grammatical structure

that is far from trivial, catering currently for 38 languages.

RGL defines basic categories such as adjectives (A), adverbs (Adv), determiners (Det), and so

on. When a category has a number appended to its name (for instance, V3), that number denotes

the amount of expected arguments (places). For example, a two-place verb (that is, a member

of V2) expects the verb and one complement: in “the robot has an odometer”, the verb “to have”

is classified as a two-place verb. The verb here is “has” and the complement is “an odometer.

One-place categories do not have numbers attached to their names.
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1 abstract RoboWorldLexicon = Cat ** {
2 ...
3 fun a_Det : Det;
4 ...
5 fun box_N : N;
6 ...
7 fun take_V2 : V2;
8 ...
9 }

10

11 concrete RoboWorldLexiconEng of RoboWorldLexicon = CatEng **
12 open MorphoEng, ResEng, ParadigmsEng, IrregEng, Prelude in {
13 ...
14 lin a_Det = mkDeterminer singular "a" | mkDeterminer singular "an";
15 ...
16 lin box_N = mkN "box" "boxes";
17 ...
18 lin take_V2 = mkV2 (mkV "take" "takes" "took" "taken" "taking");
19 ...
20 }

Listing 3: Excerpts of the RoboWorld lexicon

The basic categories are used to create more elaborate grammatical constructions, offering

support for great variety. To provide some figures, there are at least 15, 25, 20, and 30 different

ways (functions) to create common nouns, noun phrases, verb phrases, and declarative clauses

alone. In addition, when creating sentences, we can also consider different tenses and polarities.

RoboWorld is built on RGL, inheriting its flexibility and expressiveness.

4.3 RoboWorld lexicon

Listing 3 presents excerpts of the abstract and concrete grammars of the RoboWorld lexicon, that is,

RoboWorldLexicon and RoboWorldLexiconEng. There Cat is a core abstract grammar of the

RGL, declaring categories for nouns (N) and clauses (Cl), for example, among many others. CatEng

is its implementation for English. On Line 1 of Listing 3 we declare RoboWorldLexicon as an

abstract grammar that extends Cat. On Lines 3, 5, and 7, for illustration, we show the definitions

that a determiner (a Det), a noun (box N), and a verb (take V2) are part of the RoboWorld

lexicon.

RoboWorldLexiconEng extends CatEng (Line 11) and opens resource modules (for instance,

MorphoEng and IrregEng) to deal with morphology rules and irregular inflections (Line 12). It

specifies spelling and inflection forms in English for the abstract definitions of RoboWorldLexicon.

For example, a Det is a singular determiner with two linearisation forms: “a” and “an” (Line 14).

The symbol | is used to enumerate variations. Regarding box N, RoboWorldLexiconEng defines

its singular and plural forms (Line 16). Finally, for take V2, we define the inflections for the

present tense (plural and singular forms), past tense, past participle tense, and gerund (Line 18).

The RGL functions mkDeterminer, mkN and mkV2 create determiners, nouns and two-place verbs.
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Table 4.1: Well-formedness conditions of the dictionary

D1 RoboChart keywords must not be included in the dictionary.
D2 The identifiers used in RoboChart to denote the name of variables and constants

must be in the dictionary, both as nouns and adjectives, and with inflection form IRREG.
D3 The identifiers used in RoboChart to denote the name of input and output events and of

operations must be in the dictionary as nouns and with inflection form IRREG.

1 ...
2 mkBasicItem_single_noun : Cat.N -> BasicItem ;
3 ...
4 mkBasicItem_Unit : Unit -> BasicItem ;
5 ...
6 mkCompoundItem_AdverbCI : Item -> Adv -> CompoundItem ;
7 mkCompoundItem_AdverbCI_from_adjective : Item -> A -> CompoundItem ;
8 ...

Listing 4: Excerpts of the RoboWorld grammar: BasicItem and CompoundItem

It is possible to extend the RoboWorld lexicon to cover application-specific vocabulary. Here-

after, we use “dictionary” to refer to the words in the RoboWorld pre-defined and application-

specific lexicons. To enrich the dictionary, we need to create new abstract and concrete grammars

that extend RoboWorld and RoboWorldEng. Our tool makes this transparent: to add a word, we

just need to provide it, its category, and inflections (see Section 7).

When enriching the dictionary, the well-formedness conditions in Table 4.1 need to be observed.

They ensure that RoboChart keywords are not used for any other purpose (D1), and the names

of the robotic platform services are in the dictionary (D2 and D3), and therefore can be used in

sentences. These words only need to be used in the singular form, so IRREG is to be used as their

plural inflection to mark that they do not have a plural form. Identifiers that represent values (that is,

the names of variables and constants) may also be used as an adjective (D2). For example, in “the

linear velocity of the robot is set to lv m/s”, lv plays the role of an adjective.

4.4 Building blocks: ItemPhrases

Generally speaking, sentences in RoboWorld relate ItemPhrases by means of verbs. The realisa-

tion of ItemPhrase in GF closely mimics the metamodel presented in Figure 3.7. In the concrete

level, BasicItems, CompoundItems, and Items are defined as common nouns (CatEng.CN);

ItemPhrases are defined as noun phrases (CatEng.NP). So, the functions in our grammar reflect

the RoboWorld metamodel and identify the expected forms of common nouns and noun phrases.

For instance, in Listing 4, we define that a BasicItem can be created from a noun (Line 2) or a

Unit (Line 4), a type that we define to include the SI base units, among others.

As said before, we use RGL to make RoboWorld more flexible and expressive. For example,

according to the metamodel, an AdverbCI is a CompoundItem that modifies an Item by an

adverb (see Figure 3.7). In the GF-realisation, we expect both adverbs (Adv) and adjectives (A) – see
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1 mkCompoundItem_AdverbCI_from_adjective item adj =
2 let adv : CatEng.Adv = SyntaxEng.mkAdv (lin A adj)
3 in mkCN item adv ;

Listing 5: Linearisation of mkCompoundItem AdverbCI from adjective

Listing 4, Lines 6 and 7. In the second case, we use an RGL function to create an adverb from a given

adjective (see Listing 5). In the linearisation of mkCompoundItem AdverbCI from adjective

there, after extracting the string embedded in the adjective (using lin A adj), the adverb is

constructed by the RGL function SyntaxEng.mkAdv, turning, for example, “initial” into

“initially”. The function mkCN is also from RGL and creates a common noun given another

common noun (item) and an adverb (adv). So, if we apply it to “objects” and “initially”, we

get the common noun “objects initially” used, for instance, in “The home region has 5

objects initially”.

The realisation of ItemPhrases in GF, using functions such as mkItemPhrase PronounIP

and mkItemPhrase QuantifiedIP with digits, considers eight different types of quantifiers

to add expressiveness. We can write, for instance, one m, 1 m, 0.5 m, no obstacles and this

obstacle.

4.5 Writing structures: RWClauses

RoboWorld clauses (defined by the category RWClause) are used to define RWSentences; they are

instances of RGL clauses (CatEng.Cl), and define the writing structures supported in RoboWorld.

There are 12 forms of RWClause, each defined by a mK function. An RWClause can be written

in the active voice (using functions whose names start with mkRWClause ActiveVoice ) or in

the passive voice (using mkRWClause PassiveVoice functions).

In the active voice, mkRWClause ActiveVoice TransitiveVerb ItemPhrase is used to

create RWClauses using transitive verbs. There is also support for modal and progressive verbs in the

active voice ( mkRWClause ActiveVoice Modal and mkRWClause ActiveVoice Progressive

functions). The mkRWClause ActiveVoice ToBe functions give a special treatment to clauses

written using the verb “to be”. In the passive voice, we can use intransitive and transitive verbs.

The latter expects a preposition followed by an ItemPhrase.

The linearisation of the aforementioned functions use RGL functions to ensure agreement

between elements. In Listing 6 we give an example linearisation, along with an example RWClause

of the form considered. First, a verb phrase (VP) named progressive is declared. The function

mkVP creates a verb phrase from the text embedded in the provided verb (lin V2 v2) and the

second ItemPhrase (itemPhrase2). A type annotation (< ... : V2>) is applied to lin V2

v2 to ensure the text is cast to the type V2 (since verbs can have several types). Afterwards, the

RGL function progressiveVP transforms this verb phrase, taking into account the progressive
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1 -- the robot is carrying an object
2 mkRWClause_ActiveVoice_Progressive_TransitiveVerb_ItemPhrase
3 itemPhrase1 v2 itemPhrase2 =
4 let progressive : VP =
5 progressiveVP (mkVP <(lin V2 v2) : V2> itemPhrase2) ;
6 in mkCl itemPhrase1 progressive ;

Listing 6: Linearisation of mkRWClause ActiveVoice Progressive TransitiveVerb ItemPhrase

1 ...
2 mkRWSentence_PresentTense_PositivePolarity : RWClause -> RWSentence ;
3 mkRWSentence_PresentTense_NegativePolarity : RWClause -> RWSentence ;
4 mkRWSentence_PastTense_PositivePolarity : RWClause -> RWSentence ;
5 mkRWSentence_PastTense_NegativePolarity : RWClause -> RWSentence ;
6 ...

Listing 7: Excerpts of the RoboWorld grammar: RWSentence

form of its verb, whose value is assigned to the local variable progressive. Finally, when creating

the clause, the function mkCl inserts the copula (that is, the verb “to be”, in this case), ensuring

number agreement.

Example 13 The following clause is not valid since there is no number agreement

between the first ItemPhrase and the copula: “the robots is carrying an object”.

�

4.6 Tenses and polarities: RWSentences

RoboWorld sentences (RWSentence) are instances of RGL sentences (CatEng.S). Here, we deal

with verb tenses (present and past) and polarity (positive and negative sentences) – see Listing 7.

Since these possibilities apply to arbitrary RWClauses, the 12 different writing structures discussed

in Section 4.5 are lifted to 12×4 = 48 different types of sentences supported by the RoboWorld

language. Additionally, an arbitrary RWSentence can be further modified by prefixing an adverb (for

instance, “initially, the robot is in the origin”), thus, there is support for 2×48 = 96

different writing structures. Moreover, if a single new structure for writing RWClauses is added to

the language, the number of different types of sentences automatically increases by 8.

The transformations between tenses and polarities are entirely handled by RGL – see Listing 8.

Given an arbitrary RWClause (clause), it suffices to call mkS, providing the arguments pastTense

and UncNeg, to transform clause into the past tense and the negative polarity.

1 mkRWSentence_PastTense_NegativePolarity clause =
2 mkS pastTense UncNeg clause ;

Listing 8: Linearisation of mkRWSentence PastTense NegativePolarity
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1 ...
2 param OutputType = OutputEvent | Operation ;
3 ...
4 oper output_always : OutputType -> Str -> RWSentences -> S =
5 \outputType, str, sentences ->
6 let adv : CatEng.Adv = (outputSentencePrefix_Adv ! outputType) str ;
7 in mkS <adv : Adv> <sentences : S> ;
8 ...
9 mkOutputEventMapping_OutputAlways eventName sentences =

10 output_always OutputEvent eventName.s (lin RWSentences sentences) ;
11 ...
12 mkOperationMapping_OutputAlways eventName sentences =
13 output_always Operation eventName.s (lin RWSentences sentences) ;
14 ...

Listing 9: Linearisation of (mkOutputEventMapping | mkOperationMapping) OutputAlways

4.7 Writing assumptions and mapping definitions

The GF realisation of RoboWorld assumptions and mapping definitions closely relates to their

metamodel given in Figures 3.5 and 3.6; it is almost a one-to-one relation (that is, with one function

in GF to represent each type of assumption or mapping definition).

4.7.1 Assumptions

ArenaAssumptions, RobotAssumptions and ElementAssumptions are essentially RWSentences: any

valid RWSentence is accepted. For a RobotPModel or ElementPModel, we need to use a

restricted form of sentence that, for example, includes “is defined by a diagram".

4.7.2 Mapping definitions

To promote reuse, mapping definitions are realised in GF with the aid of helper functions (see List-

ing 9). To distinguish them from other types of functions, they are called operations (oper) in GF.

Specific restrictions on the use of recursion apply to operations.

As illustrated in Listing 9, with the use of operations, the definitions of OutputEventMapping

and OperationMapping are almost the same. For the functions mkOutputEventMapping OutputAlways

and mkOperationMapping OutputAlways, it suffices to provide the operation output always

with a different argument (OutputEvent or Operation), which indicates whether the sentence

being constructed relates to an output event or to an operation.

The definition of output always is also in Listing 9. Its arguments (Line 5) include, besides

the outputType just mentioned, the name str of the output event or operation, and the sentences

of the mapping. The definition uses a variable adv to record an adverb (CatEng.Adv) (Line 6). It

is specified using another operation outputSentencePrefix Adv, which produces the fragments

“when the event ... occurs” or “when the operation ... is called”, depending on
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outputType. The ellipses here are replaced with (str). The result of outputSentencePrefix Adv

! outputType is a function, determined by outputType, that is applied to str. With mkS <adv

: Adv> <sentences : S>, we get a sentence combining adv with the mapping sentences.

In conclusion, RoboWorld is a flexible and expressive subset of the English language, yet con-

trolled. The intermediate representation presented next can, therefore, be generated automatically.





5. Intermediate representation

We define the semantics of a RoboWorld document in terms of an intermediate representation (IR)

of that document. With this representation, we insulate the semantics specification presented in the

next section from some evolutions of RoboWorld. For example, further case studies are likely to

suggest different phrasings for the same meanings, which we may be able to support by extension

of the dictionary or of the concrete grammar. With the IR, such extensions, which are important to

make the language more flexible, do not affect the semantics definition.

In the IR, information about the arena, the robot, and the other elements is grouped, and

structured using notions of expressions and actions, although the original sentences are still

recorded. Two sets of rules formalise how an IR can be automatically generated for a given

RoboWorld document.

In Section 5.1, we present the IR, via the definition of its metamodel and well-formedness

conditions. In Section 5.2, we present the rules to generate the IR for a RoboWorld document.

For a RoboWorld document to be considered well formed, besides satisfying the conditions in

Tables 3.1 and 4.1, it must also be the case that the application of the rules in Section 5.2 to that

document generates a valid IR according to the conditions discussed in Section 5.1. Some of the

well-formedness conditions are guaranteed by the rules, and some need to be checked.

5.1 Metamodel and well-formedness conditions

Figure 5.1 presents the top classes of the metamodel for our IR. Here, a document is represented

by an instance of RWIntermediateRepresentation. In contrast with the metamodel (see
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Figure 5.1: RoboWorld IR: top classes

Figure 3.5), its attributes do not record assumptions (just) in terms of sentences, but in terms of a

richer collection of objects reflecting primitive and declared concepts in a RoboWorld document.

These objects, including those that represent the arena and the robot, are all instances of an abstract

class Element.

In the robotics domain, arenas and robots are clearly different concepts, and the notion of an

element in RoboWorld covers everything else, including regions and entities, such as obstacles,

robot components, and so on. In the IR, however, we provide a uniform view of all concepts of

interest to provide an internal model that is more convenient to give semantics. This is achieved

without affecting the domain-specific terminology used in RoboWorld documents.

The arena is represented by an instance of the class Arena, which in the IR is a Region. In

turn, a Region is represented by an instance of ElementDescription. The Element abstract

class has subclasses ElementDescription, to represent elements described using controlled

natural language, and ElementPModel, to represent elements described by a p-model.

As an Element, the Arena has a plurality: it must be SINGULAR, since we have just one

arena. Table 5.1 presents this well-formedness condition (IR1) and others for the IR. Figure 5.2

sketches the IR for our example. In general, the plurality of an Element can also be PLURAL
for objects representing a set of instances of an element, such as fires, or UNCOUNTABLE (for

example, smoke).

An Element also has a unique name (IR4), an Identifier that can be derived from an Item
used in the RoboWorld document. For example, in the RoboTool implementation of the rules to

generate the IR (see Section 5.2), the identifier used for the ‘tank of water’ is tank of water.

An Element also has a pose, for Elements with a body, and a number of instances, for

elements with plurality PLURAL (IR5). For the arena, the name must be “arena” (IR1).

In an ElementDescription, if it has a body, an attribute shape can record information using
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Table 5.1: Some well-formedness conditions of RoboWorld’s IR

IR1 The plurality of the arena is SINGULAR, its name is “arena”, its shape is a Box,
and its components, if any, are Regions.

IR2 If an Arena has a gradient, then hasFloor is true.
IR3 The plurality of the robot is SINGULAR, its name is “robot”, and it cannot be an

instance of Region.
IR4 The names of the Elements and Attributes are unique.
IR5 The number of an element whose plurality is SINGULAR or UNCOUNTABLE is

null.
IR6 If the arena dimension is 1D, then the shape of every ElementDescription is

either null or an instance of Box with null ywidth and zwidth.
IR7 If the arena dimension is 2D, then the shape of every ElementDescription is

either null, or an instance of Box with null ywidth and zwidth, or an instance of
Sphere.

IR8 An ElementReference to an element whose plurality is SINGULAR must be an
instance of UniqueElement.

IR9 An ElementReference to an element whose plurality is PLURAL must not be an
instance of UniqueElement.

IR10 An ElementReference to an element whose plurality is UNCOUNTABLE must be
an instance of UniqueElement or PotentialElement.

IR11 In an Assign, if the expressions of the assignto and of value are not null, then their
types are equal.

objects that represent common geometric forms (boxes, cylinders, and so on). The not unexpected

definition of the class Shape is omitted here, but all classes omitted here are in Appendix C.

The shape of the arena is always a Box (IR1), but regions of the arena may have any shape.

Moreover, if the arena is two-dimensional or one-dimensional, the Box degenerates to a square or

a line.

In addition, to cater for application-specific elements, we can define attributes, more general

properties, and components of an element. For the arena, however, components must be

Regions (IR1). The class Attribute represents an attribute by recording its unique name (IR4)

and type, the latter represented by a class Type that reflects the typing system of the RoboStar

notations, which is based on that of the Z notation [17] for convenience of support for proof.

ElementPModel is similar to the homonymous class in the metamodel (see Figure 3.5).

A Region has a dimension and may be closed or not. An Arena may have a floor, as

recorded by the Boolean attribute hasFloor. The definition of the gradient of the floor is optional,

and can be present only if hasFloor is true (IR2). Our example in Figure 5.2 shows the gradient
attribute, a NumericProperty characterised by a Constraint. The class NumericProperty
has a single attribute properties containing one or more Constraints, a class whose definition is

shown in Figure 5.3.

The Boolean attribute hasRain records whether it is raining. Finally, it is possible to record
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Figure 5.2: Partial sketch IR for RoboWorld document in Figures 3.1 and 3.2

the speed of the wind in windSpeed, which is yet another NumericProperty.

The robot is an Element with name “robot”. Its plurality has to be SINGULAR. It can be

given by an ElementDescription or ElementPModel, but not by a Region (IR3).

For each mapping class of the metamodel (see Figure 3.5), there is a similar class in the IR.

The differences are in the use of classes InputIR and OutputIR, instead of Input and Output,
and Constraint and Statement, in Figure 5.3, instead of Conditions and RWSentence.

InputIR and OutputIR, omitted here, are themselves very similar to Input and Output. The

core differences are just that Conditions and RWSentence are also replaced with Constraint
and Statement. Moreover, the sentences attribute of the InputIR subclasses are named

communications, not sentences, reflecting the fact that they define communicated values. In

Figure 5.2, we show the IR objects related to the input event fireDetected. Similarly, OutputIR
subclasses have an attribute statements instead of sentences because they define updates. In

Figure 5.2, we show the IR objects related to the call to the operation goToBuilding, which is

recorded as an output.

So, the main new features are the classes Constraint and Statement. As shown in Figure 5.3,

these classes record, besides the sentences in the RoboWorld document, additional attributes that
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Figure 5.3: RoboWorld IR: constraints and statements

record the information in the sentences in a form suitable to define the semantics. Both Constraint
and Statement have an attribute sentence, and also an extra attribute, booleanexpression in

the case of Constraint and action in Statement. These extra attributes are annotations, which

may or may not be present, depending on whether the meaning of the sentence can be captured

by the RoboWorld semantics. This is determined by the rules to generate the IR presented in the

next section.

As explained in the next section, there are two sets of rules: the first creates a basic IR, and

the second defines an annotated version of that IR. For instance, in our example, the attribute

booleanexpression of the constraint for the gradient of arena in the IR defined by the first

set of IR generation rules is null. After the second set of rules is applied, we get the annotation in

Figure 5.2.

The definition of the class BooleanExpression is in many ways as to be expected, and

we show just some of its subclasses here. We have UnaryBooleanExpressions and Binary-
BooleanExpressions, and note that in a QuantifierExpression we have an Identifier for the

quantified variable, which ranges over the instances of the element. ComparisonExpressions

include those based on the Subset and LessThan relations, among many others. The actual terms

being compared are item phrases as represented in the IR: instances of the class ItemPhraseIR.

In Figure 5.2, the booleanexpression for the gradient constraint is an instance of the class

Equal that represents equalities. It has attributes left and right whose types are ItemPhraseIR.
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ItemPhraseIR is similar to ItemPhrase, but, like Constraint and Statement, it has an extra

attribute expression to record the element described in a structured way. The type of expression
is a class Expression with a rich set of subclasses omitted here. Some of these subclasses capture

domain-specific expressions like TimeSince an event occurrence or the ArenaGradient.

As shown in Figure 5.2, the instance of Equal for the booleanexpression of the gra-
dient constraint has as its left attribute an instance of DeterminerIPIR, the IR version of

DeterminerIP. For simplicity, we do not show the objects for the item attribute of left; we just

indicate that it represents ‘gradient of the ground’. We show, however, the expression for

left, which is an instance of ArenaGradient. This object has no attributes, but flags the meaning

of the DeterminerIPIR. There can be many different ways to refer to the gradient of the floor of the

arena (‘gradient of the ground’, as in the example, ‘gradient of the floor’, ‘gradient

of the arena’, and so on). With the annotation, we simplify the definition of the semantics,

which can be based on the presence of an instance of ArenaGradient, and not on the many forms

that we can use to refer to this concept.

For the right attribute of the gradient constraint, we have an instance of FloatLiteralIR, the

IR version of FloatLiteral. Its expression just records the value of the literal, but its presence

does simplify the semantics, which can rely on the presence of an expression for all constraints.

The subclass PronounIPIR of ItemPhraseIR is similar to the subclass PronounIP of Item-
Phrase, but has yet another attribute. Namely, it records, in an attribute referent, the ItemPhra-
seIR to which the pronoun refers. This is in addition to the expression attribute inherited from

ItemPhraseIR. In the generation of the IR, the value of referent is used to indicate the element

referenced by the pronoun. If its meaning is covered by the RoboWorld semantics, in addition, the

value of expression is recorded to represent that element for the definition of the semantics.

Figure 5.3 shows just three forms of Actions. A communication (that is, an instance of

Communicate) defines a value as an ItemPhraseIR. (This is the IR class that represents an

expression.) An Assignment records its target assignto and assigning value as ItemPhraseIR.

Finally, instances of a Put subclass of Action record that an element is put into another one.

The action attribute for the statement of the output for the operation goToBuilding
is shown in Figure 5.2. It is an Assign, whose assignto attribute is a DeterminerIPIR whose

expression is a reference to a property of an element (see Figure 5.1), represented by an instance of

PropertyExpression. In this case, the value of the attribute property is one of several primitive

properties, namely, VELOCITY. The element is identified by an elementref.

In Actions and Expressions, references to an element are represented by an instance of

the class ElementReference shown in Figure 5.4. This is an abstract class with an attribute

element; the subclasses reflect the several meanings that a reference to element may have. A

reference to an element whose plurality is SINGULAR must be a UniqueElement (IR6). This

is the case of the robot, in the example in Figure 5.2. For simplicity, we do not show the object for
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Figure 5.4: RoboWorld IR: element references

the robot as an Element.

For other elements, the different forms of ElementReference capture context information.

For example, in “A fire can occur on the floor”, the reference “a fire” denotes a poten-

tial, but not necessary, instance of a fire. It is represented by an instance of PotentialElement.
In “... the distance from the robot to a fire ...” we have a reference to some fire

characterised by a constraint; this is represented by an instance of SomeElement. In the

example below we have a mapping for an alternative typeless event spray for a firefighter.

Example 14 When the event spray occurs the fires within 3.0 m are extinguished.

�

Here, “the fires” refers to all fires satisfying a constraint, and it is represented by an instance

of AllElements. Finally, QuantifiedElements records a reference to a quantified variable.

The well-formedness conditions IR7 and IR8 impose additional restrictions on the use of

ElementReferences based on the plurality of an element. Finally, IR9 is an example of a

well-formedness condition related to the types of Expressions. These are all conditions that need

to be checked, after the application of the rules presented in the next section.

5.2 Generation from RoboWorld documents

The IR for a RoboWorld document can be automatically derived. As mentioned before, this is a

two-step process. First, an IR is obtained from the provided document; afterwards, it is annotated.

In the following sections, we cover these two steps.

5.2.1 Generating the intermediate representation

Our rules define functions. Each rule has a number and a name, followed by the function decla-

ration: name, arguments, return type, and specification. The metanotation used for specification

is functional and standard. It is distinguished from the target notation to describe objects of the

IR by use of a grey font. The simple target notation is in italics. To define an object of a class C,

we use the construct newC{...}, where we list, between curly brackets, the value of each attribute.
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Rule 1. Map RWDocument

mapRWDoc(rwDoc : RWDocument) : RWIntermediateRepresentation =

new RWIntermediateRepresentation {
arena = mapArena(rwDoc.arenaAssumptions, new Arena{})
robot = mapRobot(rwDoc.robotAssumptions, new Robot{})
elements = mapElements(rwDoc.elementAssumptions,
enumerateElements(rwDoc.arenaAssumptions, rwDoc.robotAssumptions, rwDoc.elementAssumptions))

inputEventMappings = mapInputEvents(rwDoc.inputEventMappings)
outputEventMappings = mapOutputEvents(rwDoc.outputEventMappings)
operationMappings = mapOperations(rwDoc.operationsMappings)
variableMappings = mapInputEvents(rwDoc.variableMappings)

}

Rule 2. Map ArenaAssumptions

mapArena(assumptions : Seq(ArenaAssumption),arena : Arena) : Arena =

if #assumptions = 0 then arena
else mapArena(tail(assumptions),updateArena(head(assumptions),arena))

Attributes not listed have arbitrary values.

Rule 1 defines the function mapRWDoc whose application to a document, represented by

the argument rwDoc whose type RWDocument is defined in the RoboWorld metamodel (see

Figure 3.5), produces an instance of RWIntermediateRepresentation (see Figure 5.1). So, it

is this rule that defines the overall mapping from a RoboWorld document to its IR.

Each attribute of the RWIntermediateRepresentation object defined by Rule 1 is specified

by the application of a separate map function, defined by other rules. Each function takes

the relevant assumptions or mappings of rwDoc as argument. The functions mapArena and

mapRobot used to define arena and robot take default instances of Arena and Robot, that is

new Arena{} and new Robot{} (see Figure 5.1) as additional arguments. For mapElements, an

additional argument is defined by the application of the function enumerateElements, which

characterises the sequence of all the Elements declared in the assumptions made in rwDoc.

For illustration, we present here the definition of mapArena in Rule 2. It is defined recursively,

iterating over its assumptions argument: the sequence (Seq) of ArenaAssumptions in the

document. When that sequence is not empty (that is, its size #assumptions is different from 0)

we apply mapArena recursively to the sequence’s tail, but providing an updated version of the

second argument arena of mapArena to record the information in the head of assumptions.

When all ArenaAssumptions have been considered, that is, #assumptions = 0, the result is

just arena.

The function updateArena used in Rule 2 is defined by Rule 3; we show below an excerpt

of its specification. Taking into account the information that can be recorded in the IR, we have

defined a collection of boolean find functions that determine if a given assumption refers to a

particular concept. For example, findArenaDimensionInfo determines whether assumption
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Rule 3. Update Arena

updateArena(assumption : ArenaAssumption,arena : Arena) : Arena =

if findArenaDimensionInfo(assumption) then arena.dimension = getArenaDimensionInfo(assumption)
else if findArenaClosedInfo(assumption) then arena.closed = getArenaClosedInfo(assumption)
else if findArenaFloorInfo(assumption) then arena.hasFloor = getArenaFloorInfo(assumption)
else if findArenaRainInfo(assumption) then arena.hasRain = getArenaRainInfo(assumption)
. . .

Rule 4. Find dimensionality information

findArenaDimensionInfo(assumption : ArenaAssumption) : Boolean =

if refersToArena(assumption.sentence.clause.itemPhrase)
∧ assumption.sentence.clause instanceof mkRWClause ActiveVoice ToBe Adjective
∧ positiveSentence(assumptions.sentence)

then
let adj = ((mkRWClause ActiveVoice ToBe Adjective) assumption.sentence.clause).a
within if adj ∈ dimensionAdjectives then true else false

else if . . .
else false

refers to the arena dimensionality. In Rule 3, we use these find functions to determine whether the

second argument arena of updateArena can be enriched with information from assumption.

If no find function identifies information recognised in the IR, the result of updateArena is

just arena. Otherwise, the result is an updated version of arena, where one of its attributes is

changed using a get function that retrieves the relevant information from assumption.

To define the find and get functions for the sentences in the assumptions, we rely on

the control imposed by RoboWorld. Rule 4 defines findArenaDimensionInfo; the sketch

of its specification presented below illustrates how we detect whether the sentence in a given

assumption provides information about the arena dimension. First, we check whether the

first itemPhrase of the clause embedded in the sentence of the assumption mentions

the arena (using a boolean function refersToArena), whether this clause has been created by

mkRWClause ActiveVoice ToBe Adjective (see Section 4.5), and whether sentence has

a positive polarity (using a boolean function positiveSentence).

If these conditions are met, we also verify whether the adjective embedded in the clause

(adj) belongs to the set of dimension-related adjectives (dimensionAdjectives). Here, we use a

let-within structure to define the variable adj local to the rule. Its value is the adjective (a) of the

clause in the sentence of the given assumption. A cast (mkRWClause ActiveVoice ToBe Adjective)
ensures that the clause is of the right type and, therefore, we can refer to its adjective a. The

set dimensionAdjectives includes, for example, ‘three-dimensional’, ‘two-dimensional’,

and ‘3D’.

Sentences with other structures may also say something about the arena dimensionality. There-

fore, Rule 4 also considers other conditions (as indicated below by the else if . . .).
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Rule 5. Map InputEventMappings

mapInputEvents(inEvents : Seq(InputEventMapping)) : Seq(InputEventMappingIR) =

if #inEvents = 0 then 〈〉
else 〈mapInputEvent(head(inEvents)) 〉 a mapInputEvents(tail(inEvents))

Rule 6. Map InputEventMapping

mapInputEvent(inEvent : InputEventMapping) : InputEventMappingIR =

new InputEventMappingIR {
name = inEvent.name
input = mapInput(inEvent.input)

}

Example 15 Rule 4 yields true when applied to the following sentences: “the

arena is three-dimensional”, “the arena has three dimensions”. �

The mapping process for the robot, defined by mapRobot, is similar. Regarding elements,

the main difference is that mapElements considers each of the elements passed as its second

argument.

Information about mappings is also extracted from the sentences. Here, we exemplify this

process for InputEventMappings. The simple definition of the function mapInputEvents is

shown in Rule 5. It recursively applies another function mapInputEvent (see Rule 6) to each

InputEventMapping in its argument, yielding the sequence of the obtained results.

The function mapInputEvent defines an InputEventMappingIR for a InputEventMap-
ping. The name of the InputEventMappingIR is that in the InputEventMapping. The

value of the input attribute depends on the type of the Input in the InputEventMapping. So,

it is defined by an overloaded function mapInput that considers the subclasses of Input (see

Figure 3.6).

Rule 7 presents the definition of mapInput for instances input of InputSometimes. An

InputSometimes has conditions and sentences, which are recorded as constraints and

statements. To provide a concise definition, we rely on the standard map function from

functional programming to apply anonymous functions that create Constraints and Statements from

the respective sentences.

We use a where clause to define variables global to the rule called conditions and communications,

used to define the homonymous attributes of the resulting InputSometimesIR. The definition of

conditions applies, via the use of map, a function defined by a λ expression, to each sentence of

the sequence sentences of the conditions of input. The result of the map is the sequence of

the results. The function defined by the λ expression has argument x and specifies an instance of the

IR class Constraint, whose sentence attribute has value x. It is the second set of rules, presented in

the next section, that extracts further information from the sentences, if possible. The definition of
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Rule 7. Map InputSometimes

mapInput(input : InputSometimes) : InputIR =

new InputSometimesIR {
conditions = conditions
communications = communications

}
where

conditions = map (λ x−→ new Constraint{sentence = x}) input.conditions.sentences
communications = map (λ x−→ new Statement{sentence = x}) input.sentences

Rule 8. Annotate Constraint

annotateConstraint(constraint : Constraint) : Constraint =

if positiveSentence(constraint.sentence)
∧ constraint.sentence.clause instanceof mkRWClause ActiveVoce ToBe ItemPhrase then

let cl = (mkRWClause ActiveVoice ToBe ItemPhrase) constraint.sentence.clause
within

constraint.booleanexpression = new Equal {
left = createItemPhraseIR(cl.itemPhrase1)
right = createItemPhraseIR(cl.itemPhrase2)

}
else if . . .

communications is similar, but considers the sentences of input and specifies a Statement.

The extraction of information from OutputEventMappings, OperationMappings and

VariableMappings to derive an appropriate IR follows the ideas presented before.

5.2.2 Annotating the intermediate representation

As explained in the previous section, our first set of rules maps a document to an IR representation.

In contrast, the second set of rules defines an IR-to-IR transformation. Its purpose is to enrich

the IR, via the expression and action attributes of Constraints and Statements, to record

information in a structured way.

A top rule defines a function that applies to an RWIntermediateRepresentation and, like

Rule 1, uses other functions that deal with attributes of the IR classes, using yet more functions. It

is the functions for Constraint and Expression that define the features of an enriched IR.

We present next part of Rule 8, which defines a function annotateConstraint. Specifically,

we focus on the fragment that deals with positive sentences that have clauses created with the

function mkRWClause ActiveVoice ToBe ItemPhrase. An example of such a sentence is

“the gradient of the ground is 0.0”, recorded in the constraint for the gradient of the

arena in Figure 5.2. The mk function has two parameters of type ItemPhrase. For the example,

the first ItemPhrase is “the gradient of the ground” and the second is “0.0”.
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Rule 9. Annotate Statement

annotateStatement(statement : Statement) : Statement =

if statement.sentence.clause instanceof mkRWClause PassiveVoice TransitiveVerb Preposition ItemPhrase
∧ positiveSentence(statement.sentence) then

let cl = (mkRWClause PassiveVoice TransitiveVerb Preposition ItemPhrase) statement.sentence.clause
within

if cl.verb ∈ assignmentVerbs then
statement.action = new Assign {

assignto = createItemPhraseIR(cl.itemPhrase1)
value = createItemPhraseIR(cl.itemPhrase2)

}
else if . . .

else if . . .

Rule 8 annotates the constraint by setting its booleanexpression to an instance of an Equal ex-

pression with left and right attributes corresponding to the ItemPhraseIRs created from the first and

second item phrases of the clause in the sentence of the given constraint. The local variable cl
records that clause, cast to ensure it is created using mkRWClause ActiveVoce ToBe ItemPhrase.

In this case, cl.itemPhrase1 and cl.itemPhrase2 give the clause’s instances of ItemPhrase.

The function createItemPhraseIR, from our first set of rules, is used to translate these Item-
Phrases to their representations in the IR: instances of ItemPhraseIR. For our example, as

shown in Figure 5.2, we get a DeterminerIPIR and a FloatLiteralIR for the item phrases in the

constraint of the arena.

We show below part of the Rule 9 definition for annotation of Statements. The case presented

is for clauses of type mkRWClause PassiveVoice TransitiveVerb Preposition ItemPhrase.

that are positive. An example is “the velocity of the robot is set to 1.0 m/s towards

the building”. This function has four parameters: a first ItemPhrase, a two-place verb

V2, a Preposition, and a second ItemPhrase. For the previous example, the arguments are

“the velocity of the robot”, “set”, “to”, and “1.0 m/s towards the building”. For

this kind of clause, the definition of Rule 9 considers two cases, depending on whether the

verb (cl.verb) of the clause denotes an assignment notion (that is, it belongs to the set of

assignmentVerbs) or not. If it does, the action attribute of the statement is annotated with

an instance of Assign, whose value of the attribute assignto is an ItemPhraseIR for the first

argument of the mk function (cl.itemPhrase1), and whose value is the ItemPhraseIR for the

last argument (cl.itemPhrase2).

Next, we show how we use the IR to define a semantics for RoboWorld.
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In this section, we give an overview of the formal semantics of RoboWorld documents (Section 6.1),

and present semantic functions that apply to the IR (Section 6.2). Together with the rules presented

in Section 5.2, they can be used to generate the semantics of a RoboWorld document automatically.

6.1 Formal semantics: overview

The semantics of a RoboWorld document is a hybrid model, due to the continuous nature of the

arena and movement. We thus specify formal semantics for RoboWorld using CyPhyCircus.

Like in CSP, CyPhyCircus models define mechanisms via processes that can communicate

with each other via atomic and instantaneous event. Like in Circus, however, CyPhyCircus

processes include a state. As already said, Circus combines Z and CSP. Moreover, the state of a

CyPhyCircus process can contain continuous variables and may or may not be encapsulated. The

behaviour of a process is defined by an action, which, like in CSP, defines patterns of interaction,

but, like in Circus, can also define data updates. We explain the constructs of CyPhyCircus as we

use them.

The overall structure of the RoboWorld semantics and how it connects with the semantics of

RoboChart is indicated in Figure 6.1. The semantics of a RoboWorld document is a CyPhyCircus

process comprised of two further processes composed in parallel: an environment process, which

represents the objects in the environment and handles triggering of events, and a mapping process,

which contains the semantics for the output-event and operation mappings of the document. To

define a model for a whole system, including the control software modelled in RoboChart, and the
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Figure 6.1: The structure of the RoboWorld semantics

robot and the environment as defined in a RoboWorld document, we can compose the RoboWorld

process with the process that defines the semantics of the RoboChart module as shown at the

bottom of Figure 6.1. The RoboWorld process communicates with the RoboChart process on

CyPhyCircus (and CSP) events representing the services of the robotic platform.

The environment process is defined by the parallelism (represented by parallel bars in Figure 6.1)

of two actions. The first action is a loop that (a) evolves the state; (b) communicates with the

mapping process via get and set channels; and (c) buffers information about inputs. The body of

the loop includes an action (indicated by the box labelled robot movement in Figure 6.1) that

continuously evolves variables representing elements of the environment to capture the movement

of the robot. This evolution can be interrupted (indicated by4 in Figure 6.1) by either the detection

of a collision between the robot and an element of the environment, or by the time reaching a

specified sample time. After the interruption, if it is due to reaching the sample time, the loop action

checks if the conditions for each input event are fulfilled, communicates the result to the second

parallel action (indicated by the box labelled event buffers in Figure 6.1) and then communicates

with the mapping process to allow it to get and set the values of state variables, before starting again.

If the interruption of robot movement is due to a collision, the robot is stopped: its velocity and

acceleration are set to zero, and then the action loops back.

The action event buffers defines a set of buffers, one for each input or output event. A buffer

for an input event records whether that event was detected on the time step, and provides that

information to the RoboChart process. A buffer for an output event records the time in which it last

happened. It takes that information from the mapping process via a happened channel. Buffering

the inputs and outputs allows the evolution of the environment in robot movement to proceed

independently from their communication to the RoboChart process, directly in the case of input

events, or indirectly via the mapping process, in the case of output events.

The mapping process is defined by the interleaving of processes that accept output events and

operation calls from the RoboChart process, and pass on the relevant information to the environment

process. These processes capture the mapping definitions in the RoboWorld document.

Figures 6.2-6.10 sketch the semantics for the firefighter document presented in Figures 3.1 and
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channelsetgetSetChannels == {|getRobotPosition,getRobotVelocity, . . . |}
channelseteventHappenedChannels == {|sprayHappened, takeOffHappened, . . . |}

processRWDocument =̂ (Environment JgetSetChannels∪ eventHappenedChannels∪{proceed} KMapping)
\getSetChannels∪ eventHappenedChannels∪{proceed}

Figure 6.2: The RWDocument process for the firefighter example

ArenaProperty
xwidth,ywidth,zwidth : R
gradient,windSpeed : R
locations : PPosition
home : HomeProperty

locations = {x : 0.0 . . xwidth; y : 0.0 . . ywidth; z : 0.0 . . zwidth}

Figure 6.3: Example of a type declared in the semantics of the firefighter RoboWorld document

3.2. Figure 6.2 shows the definition of the overall RWDocument process that captures the semantics

of the whole document. As already said, it is defined by a parallel composition (J . . .K) of processes

Environment (see Figure 6.6) and Mapping (see Figure 6.10). The union of the sets getSetChannels,

eventHappenedChannels and {proceed}, indicated between the J and K symbols, contains the events

that require synchronisation between Environment and Mapping. The same set is indicated after \
to define that the events happen instantaneously and are not visible by the RoboChart process.

The sets getSetChannels and eventHappenedChannels are also defined in Figure 6.2. As their

names indicate, these are events for communication with the Mapping process (getSetChannels)

and with the buffers (eventHappenedChannels) as sketched in Figure 6.1. Like in CSP, CyPhy-

Circus events represent communications over channels; fat brackets {| . . . |} are used to define

the set of all events representing communications on the channels listed. Examples of get, set,

and happened channels are given in Figure 6.2, as part of the definition of getSetChannels and

eventHappenedChannels.

The channel proceed is just a signal, that is, it does not communicate any values. It is used by

Mapping to indicate to the Environment that it can proceed with the loop (see Figure 6.1) after all

necessary communications over getSetChannels and eventHappenedChannels have finished.

To define the types of channels and state variables, the semantics declares types used to represent

the properties of the elements in the environment. These are record types specified as Z schemas,

written as a box with the name of the schema (record type) at the top, the components of the

schema (fields of the record) and their types specified inside the box, and constraints on those

components specified below a horizontal line. Figure 6.3 shows the type ArenaProperty used to

record properties of the arena. The complete model is available in Appendix D.

The definition of ArenaProperty follows closely that of the class Arena in the IR. Some of

the attributes of the IR arena, however, are used to define the semantics, but do not need to be
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channelfireDetectedTriggered : B
channelsprayHappened
channelgetRobotPosition : Position
channelsetRobotTank of water : Tank of waterType

Figure 6.4: Some channels declared in the semantics of the firefighter RoboWorld document

reflected in ArenaProperty. For instance, we recall that the shape of the arena is always a Box.

We do not, however, have a shape component in ArenaProperty, but the dimension attribute of

the IR arena determines the attributes of the IR class Box that we include in ArenaProperty. For

our example, we have a three-dimensional arena, and so components xwidth, ywidth, and zwidth of

ArenaProperty, each of which is a real number, record the size of the arena.

Additionally, when the attribute hasFloor of arena is true, like in our example, ArenaProperty

has a component recording the gradient of the ground. We always record the windspeed, but use

closed and hasRain from arena to define the action that models the movement of the robot (see

Figure 6.1). The component locations is a set (specified in Z by P) of Positions, representing all the

positions inside the arena. Position is defined as the set of triples of real numbers, since the arena is

three-dimensional. The locations set is derived from the size of the arena, and hence is defined in a

constraint on the ArenaProperty schema. It includes the whole range of positions, with the values

for each coordinate starting from 0.0 and going up to the size for each dimension.

Finally, ArenaProperty has a component for each region of the arena. In our example, we have

a component home. Its type is defined by another schema, omitted here. Additional schemas define

types to represent the robot, and, in our example, also the building and a fire.

The declaration of channels in CyPhyCircus is global to processes. Figure 6.4 shows the

declaration of a few of the channels used in the RoboWorld semantics as indicated in Figure 6.1.

We declare channels used to indicate to the event buffers whether an input event has occurred.

One of these is declared for each input, with the name of the channel formed from the name of

the input appended with Triggered. Each of these channels communicates a boolean value (B)

indicating whether the event has been detected at the timestep.

There are also Happened channels, one for each output event and operation, to signal to the

buffers when an output event has happened or an operation has been called. This allows the

Environment to record the time since the occurrence of these events, which can be used in the

trigger conditions for input events. For example, in the mapping of the input event critical in the

firefighting UAV example, where the times since spray and takeOff are used (see Figure 3.2).

Finally, there are are get and set channels for the properties of each element in the environment.

Figure 6.4 shows the declarations of the get channel for the robot position, and of the set channel

for the tank of water of the firefighter example. Tank of waterType is an enumeration determined

by the type of the attribute tank of water of the robot in the IR. The arena and its regions
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arena : ArenaProperty
robotInit : RobotProperty
potentialFires : PFireProperty

groundLocations : PPosition

groundLocations = {x,y,z : R | (x,y,z) ∈ arena.locations ∧ z = 0}

arena.xwidth = 50.0
arena.ywidth = 60.0
arena.zwidth≥ building.zwidth+1.0

timeStep : R

Figure 6.5: Some global constants and constraints in the semantics of the firefighter

do not have channels for their properties, since they are always static and so their properties are

defined as global constants. The properties for other elements have channels so that they can be

handled in a uniform way, regardless of whether they are static or not.

The semantics also uses the channels for the services of the RoboChart robotic platform, which

correspond to the input and output events, and to operation calls.

Global constants along with constraints on them capture environment assumptions. Examples

are shown in Figure 6.5. The constants are specified using the Z notation for axiomatic definitions,

indicated by a vertical line on the left without a full box. They have a similar structure to schemas,

consisting of definitions and optional constraints separated by a horizontal line.

We declare global constants for the properties of each of the elements of the environment;

their types are the Property records. The arena, for example, is unique and static, so its global

constant records the values for its properties, making them globally accessible to the Environment

and Mapping processes. The robot is not static, so its global constant, robotInit, just represents

the initial values of its properties. Figure 6.5 also gives the example of the constant for the fires.

Since they are plural and have dynamic attributes (since the status can change over time), the global

constant is a set of potential FireProperty records, potentialFires. The actual fires are declared

later in the state of Environment, so that their statuses can change, with the fires drawn from the

potentialFires set.

Some global constants capture general properties. For instance, in Figure 6.5, groundLocations

is a set of Positions defined to be the locations in the arena where the z component is equal to zero.

This definition is standard and is included since the arena is defined to have a floor of gradient 0.0.

Additional axiomatic definitions capture the assumptions, potentially referring to properties

of different elements. For instance, the penultimate definition in Figure 6.5 is concerned with

arena.zwidth and building.zwidth. These constraints arise from the annotated Constraints in
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processEnvironment =̂ begin

EnvironmentState == [ visiblerobot : RobotProperty; visiblefires : seqFireProperty;
time : R; stepTimer : R; EventTimes ]

stateEnvironmentState

EnvironmentStateInit
EnvironmentState ′

robot′ = robotInit ∧ ranfires′ ⊆ potentialFires ∧ time′ = 0.0 ∧ stepTimer′ = 0.0 ∧ EventTimesInit

RobotMovementAction =̂ · · ·

CollisionDetection =̂ RobotGroundCollision@RobotBuildingCollision@RobotFireCollision

InputTriggers =̂ fireDetected InputEventMapping9noFire InputEventMapping9 . . .

Communication =̂ ((GetRobotPosition@GetRobotVelocity@ · · ·) ; Communication)@proceed−→Skip

· · ·
InputEventBuffers =̂ fireDetected Buffer 9noFire Buffer 9 critical Buffer 9 landed Buffer

OutputEventBuffers =̂ spray Buffer 9 takeOff Buffer 9goToBuilding Buffer 9goHome Buffer 9 searchFire Buffer

EventBuffers =̂ InputEventBuffers9OutputEventBuffers

EnvironmentLoop =̂ (EnvironmentStateInit) ; µX •
RobotMovementAction; (stepTimer < timeStep)NCollisionDetection

@
(stepTimer ≥ timeStep)N InputTriggers ; Communication ; stepTimer := 0.0

 ; X

channelset triggerChannels == {|fireDetectedTriggered,noFireTriggered,criticalTriggered, landedTriggered |}

• (EnvironmentLoop J triggerChannels KEventBuffers)\ triggerChannels

end

Figure 6.6: Environment process for the firefighter example

the IR, relying on their expressions. The constraint just mentioned corresponds to the assump-

tion “the height of the arena is the height of the building plus at least 1.0

m” (see Figure 3.1).

Finally, a constant timeStep records the length of the time for the loop in the Environment

process. The structure of Environment is shown in Figure 6.6.

Environment is defined as a basic process, which explicitly specifies a state and a main action

at the end after a spot (•) to define its behaviour. This is in contrast, for example, with a process

like RWDocument in Figure 6.2, which is defined in terms of other processes. Differently from a

process, an action is local to a process and has access to the state of that process. Typically, a basic

process definition includes various actions used to define its main action.
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RobotMovement
ΛEnvironmentState

drobot.position
dt = robot.velocity . . .

dtime
dt = 1 ∧ dstepTimer

dt = 1

RobotMovementAction =̂ (RobotMovement)4(
(robot.position ∈ groundLocations ∧ robot.velocity.3 < 0)
∨ . . . ∨ (stepTimer ≥ timeStep)

)
Figure 6.7: The RobotMovementAction for the firefighter UAV

The state of the Environment process is given by a schema EnvironmentState, which defines

components to record the state of the robot and other dynamic elements. These components are

marked visible, so that the behaviour of Environment is characterised by the evolution of the values

of these components over time, as well as occurrences of events. In our example, besides robot, we

have a sequence of fires. The types RobotProperty and FireProperty are defined in Appendix D.

There is no component to record the state of the building in EnvironmentState since the building

contains no dynamic elements, whereas the fires have a status that may change.

EnvironmentState also contains encapsulated components. First, time is a clock recording the

global time; it is used to determine when events occur. Second stepTimer is another clock that

accounts for the time the environment evolves to detect when timeStep is reached. A schema

EventTimes, which we omit here, is also defined with two components for each (input and output)

event and operation. One component is a boolean recording whether the event happened or the

operation was called, and another records the time of the occurrence or call. The EventTimes schema

is included into EnvironmentState so that its components become components of EnvironmentState.

The main action of Environment is a parallel composition of an action EnvironmentLoop,

defining the main loop for the environment, and an action EventBuffers (see Figure 6.1). This

parallelism synchronises on the input-event Triggered channels, which are placed into a channel

set triggerChannels, to signal to the buffers when an input event is detected at the timeStep. The

triggerChannels are hidden, so that communications on these channels are internal to Environment.

EnvironmentLoop first initialises the state using another action EnvironmentStateInit, and then

enters a loop, defined by a recursion that introduces a local name X (µ X). In the body of the

recursion, EnvironmentLoop performs RobotMovementAction, sketched in Figure 6.7. Afterwards,

EnvironmentLoop proceeds to a choice (@) that depends on whether stepTimer < timeStep or not,

that is, on the reason for interrupting RobotMovementAction (see Figure 6.1), and then recurses (X).

Figures 6.7, 6.8, and 6.9 show actions of Environment that are omitted in Figure 6.6.

EnvironmentStateInit is a data operation, defined by a Z schema. Its declaration EnvironmentState′

specifies dashed copies of the state components to represent the final state of the initialisation, that

is, the initial values of the state components. The initial state of the robot is defined to be that
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fireDetected InputEventMapping =̂
if(∃fire1 : ranfires • ¬ (distance(fire1.position,robot.position)> 0.5))−→

fireDetectedTriggered!True−→fireDetectedOccurred,fireDetectedTimer := True, time
8¬ (∃fire1 : ranfires • ¬ (distance(fire1.position− robot.position)> 0.5))−→

fireDetectedTriggered!False−→Skip
fi

Figure 6.8: The fireDetected InputEventMapping action for the firefighter example

specified in the global constant robotInit. The initial state of fires is defined by requiring that its

range (elements, identified by ranfires) is a subset of the potentialFires. This ensures that all fires

satisfy the constraints on potentialFires, without specifying the number of fires (which is undefined

in the assumptions). The time and stepTimer components are initialised to 0.0, and the EventTimes

components are initialised as defined in a separate schema EventTimesInit (omitted here): the timers

are initialised to 0.0 and the boolean components to false.

RobotMovementAction specifies a state evolution using a special kind of schema, here with

name RobotMovement, that is specifically available in CyPhyCircus (but not in Z or Circus).

Such schemas are indicated by a Λ declaration of the state to specify evolution according to a

set of given differential equations. The body of RobotMovement has, for instance, differential

equations describing the movement of the robot and the evolution of timers. For example, as shown

in Figure 6.7, the robot’s position evolves with a derivative equal to its velocity; other equations are

omitted. The time and stepTimer components evolve with a derivative of 1, so that it keeps track of

the time in the environment. Every component in EnvironmentState not mentioned in the equations

of RobotMovement, including the discrete components, remains the same throughout the evolution.

In RobotMovementAction, RobotMovement is interrupted (4) by the detection of a collision

or the stepTimer reaching the timeStep. The interruption condition is a disjunction covering four

cases, two of which are shown in Figure 6.7. The first three cases are related to the robot colliding:

with the ground, with the building, or with a fire. In each case, a collision is detected if the robot’s

position is within the element it is colliding with, and the robot is moving towards that element. In

Figure 6.7, we consider collision with the ground, so we require robot.position to belong to the

groundLocations, and the third component of the robot.velocity vector (triple) to be negative, so

that the robot is moving downwards. We note that the fires are treated as solid objects, since their

dimensions are defined in the assumptions. The fourth disjunct of the interruption condition shown

in Figure 6.7 is about the stepTimer reaching the timeStep (stepTimer ≥ timeStep).

In EnvironmentLoop, a choice checks if the stepTimer has reached timeStep. If not, a

CollisionDetection action offers another choice based on the three cases of collision described

above. In all cases, the robot is simply stopped: its velocity and acceleration are set to 0.0.

If the timeStep is reached, trigger conditions for input events are checked in interleaving (9),

that is, independently, as defined by InputTriggers in Figure 6.6. For example, the conditions for

fireDetected are checked by the action in fireDetected InputEventMapping, in Figure 6.8.
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fireDetected Buffer =̂ varfireDetectedTrig : B • fireDetectedTrig := False;

µX •
 fireDetectedTriggered?b−→fireDetectedTrig := b

@
(fireDetectedTrig = True)NfireDetected.in−→Skip

 ; X

takeOff Buffer =̂ takeOffHappened−→ takeOffOccurred, takeOffTime := True, time ; takeOff Buffer

Figure 6.9: Some Buffer actions for the firefighter example

In fireDetected InputEventMapping, we have a choice based on whether there is a fire1 such

that the distance between its position and the robot’s position is not greater than 0.5 (metres, since

SI units are used in the semantics and already adopted in the IR). If the condition is fulfilled, True is

signalled through the fireDetectedTriggered channel to communicate to EventBuffers the occurrence

of fireDetected (as stated in the RoboWorld mapping – see Figure 3.2). Moreover, the state

components for fireDetected (from EventTimes) are updated: the boolean fireDetectedOccurred

is set to True, and the timer fireDetectedTimer is set to time. If the condition is not fulfilled, False
is communicated on fireDetectedTriggered and the action terminates (Skip).

After InputTriggers, Communication repeatedly offers a choice of simple actions (omitted in

Figure 6.6) that communicate (with the Mapping process) via the getSetChannels to get and set

values for the state components. This is used by Mapping to capture the effect of output events

and operations – see Figure 6.1. When Mapping is finished, for the current loop, it signals that via

proceed. At that point the stepTimer is reset and EnvironmentLoop recurses.

EventBuffers is defined by the interleaving of two actions InputEventBuffers and OutputEventBuffers.

These are themselves defined by the interleaving of a Buffer action for each input or output event.

These are similar, so we just present fireDetected Buffer and takeOff Buffer in Figure 6.9.

Regarding fireDetected Buffer, it initialises the boolean state component for the event, here

fireDetectedTrig, to False, then enters a recursion. In the body of the recursion it repeatedly offers

a choice between accepting a new value from EnvironmentLoop via fireDetectedTriggered and

storing it in fireDetectedTrig, and offering the fireDetected.in input (to the RoboChart process – see

Figure 6.1) whenever fireDetectedTrig is True. Thus, the input event is offered after its triggering

condition holds at the timeStep, until a timeStep where the condition for the event is no longer

satisfied.

As illustrated in Figure 6.9 for takeOff Buffer, the Buffer action for an output event or

operation call accepts a signal from the Mapping process via the Happened channel. Afterwards, it

sets the corresponding state components for the event or operation, just like an input Buffer action.

The Mapping process is defined by a parallelism of similar processes for each output event

and operation synchronising on the channel proceed. The definition for our firefighter example is

shown in Figure 6.10. For illustration, we show the process for the goToBuilding operation, called
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processMapping =̂ spray OutputEventMapping J{|proceed |} K takeOff OperationMapping
J{|proceed |} KgoToBuilding OperationMapping J{|proceed |} KgoHome OperationMapping
J{|proceed |} K searchFire OperationMapping

processgoToBuilding OperationMapping =̂ begin

goToBuilding Semantics =̂ goToBuildingCall
−→getRobotPosition?robotPos−→getBuildingPosition?buildingPos
−→ (setRobotVelocity!(1.0∗ ((buildingPos− robotPos)/norm(buildingPos− robotPos))))−→Skip;
proceed−→goToBuilding Semantics

goToBuilding Monitor =̂ goToBuildingCall−→goToBuildingHappened−→goToBuilding Monitor

• goToBuilding Semantics J{|goToBuildingCall |} KgoToBuilding Monitor

end

Figure 6.10: The Mapping and goToBuilding OperationMapping processes for the firefighter UAV
example

goToBuilding OperationMapping, also in Figure 6.10.

The OperationMapping and OutputEventMapping processes are basic, but without state;

their main actions are parallelisms of two other actions: a Semantics action, to capture the mapping

defined in the RoboWorld document, and a Monitor action, to communicate with EventBuffers.

They are both triggered by the CyPhyCircus event for the RoboWorld operation or event. In our

example, this is the CyPhyCircus event goToBuildingCall for the operation goToBuilding.

As shown in Figure 6.10, the goToBuilding Semantics action captures the semantics corre-

sponding to the mapping definition “when the operation goToBuilding is called, the

velocity of the robot is set to 1.0 m/s towards the building”. After goToBuildingCall,

it obtains from Environment the position of the robot (robotPos) and of the building (buildingPos)

via get channels. It then sets, via a set channel, the velocity of the robot to 1, multiplied by a

normalised vector from the robotPos to buildingPos, representing 1.0 m/s towards the building.

When finished setting values as required to capture the mapping, a Semantics action signals the

Environment to proceed and recurses. Since all Mapping actions need to synchronise on proceed,

the Environment proceeds only when all Semantics actions are done.

A Monitor action communicates with EventBuffers via Happened channels. In our exam-

ple, goToBuilding Monitor, after goToBuildingCall, communicates goToBuildingHappened to

EventBuffers so that it can update timers, before recursing. The synchronisation between the

Semantics and the Monitor actions ensures that they respond to the same event occurrence or

operation call.

The semantics of a RoboWorld document can be generated automatically. Next, we discuss the
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formalisation of the semantics, via generative rules that define semantic functions.

6.2 Semantics generation: transformation rules

In this section we present the rules for generating the semantics of a RoboWorld document from its

IR presented in Section 5. The top-level Rule 10 defines the overall semantics as a CyPhyCircus

section (that is, sequence of definitions). As in Section 5.2, the text in grey indicates terms of the

metanotation describing how the output is constructed. The output of these rules is CyPhyCircus,

describing the model, and is presented in black text.

Rule 10 defines the semantic function [[ ]]RW that characterises the CyPhyCircus section that

includes all definitions needed to specify the top process RWDocument that captures the behaviours

of the robot and environment elements allowed by the assumptions and mappings in a well-formed

instance rw of the IR class RWIntermediateRepresentation given as argument.

The definition of Rule 10 uses functions defined by other rules to specify groups of definitions.

The first, typeDefinitions, generates the property types for each element, such as ArenaProperty

and RobotProperty. Afterwards, the channels are declared. The declarations for those signalling

when an input has been triggered are defined by the function eventTriggeredChannelDefinitions,

for those signalling when an operation or output has happened by eventHappenedChannelDefinitions,

and for those for getting and setting the values of properties for each element by getSetChannelDefintions.

Finally, proceed is declared. Each function takes as argument the attributes of rw that contain the

relevant information.

The constraints on elements are defined by an application of elementGlobalAssumptions.

The declaration of timeStep is in the body of Rule 10 directly. It is followed by the definitions of

the process Environment, of Mapping processes and of Mapping itself, and finally RWDocument.

Each of these processes is characterised using further functions.

Environment is defined by environmentProcess(rw) specified by Rule 32. The definitions of

the Mapping processes are characterised by for iterations over the outputEventMappings and

operationMappings of rw. For each output or operation in these attributes, a process defini-

tion characterised by outputMappingDefinition(output) or operationMappingDefinition(operation)
is included (see Figure 6.10 for an example). Mapping itself is characterised by mappingProcess,

which also takes the attributes outputEventMappings and operationMappings as argu-

ments, to define the parallelism of the Mapping processes (see Figure 6.10).

Finally, the RWDocument process is defined as the parallel composition of Environment and

Mapping. The synchronisation set, communicationEvents, is defined in the where clause as

the union of three sets: the get and set channels, defined by getSetEvents, the signals that output

events have happened or operations have been called, defined by eventHappenedSignals, and

{proceed}.
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Rule 10. Semantics of RoboWorld Documents

[[rw : RWIntermediateRepresentation]]RW =

typeDefinitions(rw.arena, rw.robot, rw.elements)
eventTriggeredChannelDefinitions(rw.inputEventMappings, rw.variableMappings)
eventHappenedChannelDefinitions(rw.outputEventMappings, rw.operationMappings)
getSetChannelDefinitions(rw.robot, rw.elements)
channel proceed
elementGlobalAssumptions(rw.arena, rw.robot, rw.elements)

timeStep : R
processEnvironment =̂ environmentProcess(rw)
for output in rw.outputEventMappings do

outputMappingDefinition(output)
end for
for operation in rw.operationMappings do

operationMappingDefinition(operation)
end for
processMapping =̂ mappingProcess(rw.outputEventMappings, rw.operationMappings)
processRWDocument =̂ (Environment JcommunicationEvents KMapping)\communicationEvents

where
communicationEvents =

getSetEvents(rw.robot, rw.elements)
∪eventHappenedSignals(rw.outputEventMappings, rw.operationMappings)
∪{proceed}

Rule 11. Type Definitions

typeDefintions(arena : Arena, robot : Element,elements : Seq(Element)) =

arenaTypeDefinitions(arena)
robotTypeDefinitions(robot)
for element in elementTypes do

elementTypeDefinitions(element)
end for

The rule for typeDefinitions is Rule 11. It calls arenaTypeDefinitions() to generate

the ArenaProperty schema and the types it uses, and robotTypeDefinitions() to generate the

RobotProperty schema and the types it uses. It then iterates over elementTypes, generating the

types for each element in elementTypeDefinitions().

As an example of one of these, we show the rule for arenaTypeDefinitions() (Rule 12), the

rules for generating other type definitions are similar. This rule takes the arena passed to it,

and first generates type definitions for each of the regions in the components of the arena
using elementTypeDefinitions(). In our firefighter example, this generates the HomeProperty

schema for the home region. Afterwards, a call to attributeTypeDefinitions() generates type

definitions for any named types required by the attributes. Although the arena in our example has no

attributes, attributeTypeDefinitions() is used to generate types for attributes of other elements,

so it generates Tank of waterType, for example. After other types are generated, the ArenaProperty

schema is defined. The xwidth, ywidth and zwidth components are generated depending on the

dimension of the arena. Note that the shape does not need to be considered here, since it

is always a box for the arena. The gradient, windSpeed and locations components, which all
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Rule 12. Type Definitions for the Arena

arenaTypeDefinitions(arena : Arena) =

for region in arena.components do
elementTypeDefinitions(region)

end for
attributeTypeDefinitions(arena.attributes)

ArenaProperty
if arena.dimension = ThreeD then

xwidth,ywidth,zwidth : R
else if arena.dimension = TwoD then

xwidth,ywidth : R
else

xwidth : R
end if
gradient,windSpeed : R
locations : PPosition
for region in arena.components do

region.name : titleCase(region.name)Property
end for
for attribute in arena.attributes do

attribute.name : attributeType(attribute.type)
end for

if arena.dimension = ThreeD then
locations = {x : 0.0 . . xwidth; y : 0.0 . . ywidth; z : 0.0 . . zwidth}

else if arena.dimension = TwoD then
locations = {x : 0.0 . . xwidth; y : 0.0 . . ywidth}

else
locations = {x : 0.0 . . xwidth}

end if
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Rule 13. Type Definitions Needed for Attributes

attributeTypeDefinitions(attributes : Seq(Attribute)) =

for attribute in attributes do
if attribute.type instanceof Enumeration then

titleCase(attribute.name)Type ::= ((Enumeration)attribute.type).variants[0]
for variant in ((Enumeration)attribute.type).variants[1..] do

| variant
end for

else if attribute.type instanceof Record then

titleCase(attribute.name)Type
for field in ((Record)attribute.type).fields do

field.name : attributeType(field.type)
end for

end if
end for

Rule 14. Type Definitions for the Robot

robotTypeDefinitions(robot : Element,dimension : Dimension) =

if robot instanceof ElementDefinition then
robotElementDefinitionTypeDefinitions((ElementDefinition)robot,dimension)

else
robotElementPModelTypeDefinitions((ElementPModel)robot,dimension)

end if

arenas have are then generated. At the end of the schema, components for each region in the

components of the arena and each attribute in the attributes of the arena. The types for

the regions are the schemas formed from the name of the region with the first letter capitalised

and appended with Property. The type for the attributes is generated by a function attributeType,

converting the type representation in the IR into CyPhyCircus text and referencing the types

declared in attributeTypeDefinitions() if needed.

The attributeTypeDefinitions() rule is Rule 13. It receives a sequence of attributes, and

iterates over them, checking for any whose type is an Enumeration or a Record. For an0

Enumeration type, a Z notation free type is generated representing an enumeration, consisting of

its variants separated by vertical bars. For a Record type, a Z schema is generated, with each of

its fields as the components. In both cases, the name of the new type is formed from taking the

name of the attribute, with the first letter capitalised, and appending Type.

After types are defined, channels are declared, in the function eventTriggeredChannelDefinitions,

defined in Rule 20. It generates channels for the robot and each element, other than Regions (which

are static, so always defined as global constants).

The rule for elementGlobalAssumptions(), which generates the global assumptions on

elements following the channel definitions, is shown in Rule 26. It receives the arena, robot and

elements from the IR, and first generates definitions of global constants recording the values of

the properties for each of these, either the actual values for a static element or the initial values for
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Rule 15. Type Definitions for an ElementDefinition Robot

robotElementDefinitionTypeDefinitions(robot : ElementDefinition,dimension : Dimension) =

for component in robot.components do
elementTypeDefinitions(component)

end for
attributeTypeDefinitions(robot.attributes)

RobotProperty
elementSizeParameters(robot.shape,dimension)
if robot.shape! = null then

locations : PPosition
end if
position : Position
velocity : Velocity
acceleration : Acceleration
orientation : Orientation
angularVelocity : AngularVelocity
angularAcceleration : AngularAcceleration
for component in robot.components do

component.name : titleCase(compnent.name)Property
end for
for attribute in robot.attributes do

attribute.name : attributeType(attribute.type)
end for

elementLocationsDefinition(robot.shape,dimension)

Rule 16. Type Definitions for an Element

elementTypeDefinitions(element : Element,dimension : Dimension) =

if element instanceof ElementDefinition then
elementDefinitionTypeDefinitions((ElementDefinition)element,dimension)

else
elementPModelTypeDefinitions((ElementPModel)element,dimension)

end if
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Rule 17. Type Definitions for an ElementDefinition Element

elementDefinitionTypeDefinitions(element : ElementDefinition,dimension : Dimension) =

for component in robot.components do
elementTypeDefinitions(component)

end for
attributeTypeDefinitions(element.attributes)

RobotProperty
elementSizeParameters(element.shape,dimension)
if element.shape! = null then

locations : PPosition
end if
position : Position
orientation : Orientation
for component in element.components do

region.name : titleCase(componentregion.name)Property
end for
for attribute in element.attributes do

attribute.name : attributeType(attribute.type)
end for

elementLocationsDefinition(element.shape,dimension)

Rule 18. Fields for Size Parameters of an Element

elementSizeParameters(elementShape : Shape,dimension : Dimension) =

if elementShape! = null then
if dimension = ThreeD then

if elementShape instanceof Box then
xwidth,ywidth,zwidth : R

else if elementShape instanceof Cylinder then
radius,depth : R

else
radius : R

end if
else

if elementShape instanceof Box then
if dimension = TwoD then

xwidth,ywidth : R
else

xwidth : R
end if

else
radius : R

end if
end if

end if
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Rule 19. Definition of locations Set for an Element

elementLocationsDefinition(elementShape : shape,dimension : Dimension) =

if elementShape! = null then
if dimension = ThreeD then

if elementShape instanceof Box then
locations = boxLocationspositionorientationxwidthywidthzwidth

else if elementShape instanceof Cylinder then
locations = cylinderLocationspositionorientationradiusdepth

else
locations = sphereLocationspositionorientationradius

end if
else

if elementShape instanceof Box then
if dimension = TwoD then

locations = squareLocationspositionorientationxwidthywidth
else

locations = lineLocationspositionorientationxwidth
end if

else
locations = lineLocationspositionorientationradius

end if
end if

end if

Rule 20. Input event trigger channel definitions

eventTriggeredChannelDefinitions(inputs : Seq(InputEventMappingIR),
variables : Seq(VariableMappingIR)) =

for input in inputs do
if inputHasCommunications(input) then

channel input.nameTriggered : B× inputCommunicationTypes(input)
else

channel input.nameTriggered : B
end if

end for

Rule 21. Output event happened channel definitions

eventHappenedChannelDefinitions(outputEvents : Seq(OutputEventMappingIR),
operations : Seq(OperationMappingIR)) =

for outputEvent in outputEvents do
channel outputEvent.nameHappened : B

end for
for operation in operations do

channel operation.signature.nameHappened : B
end for
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Rule 22. Variable get/set channel definitions

getSetChannelDefinitions(robot : Element,elements : Seq(Element)) =

if robot instanceof ElementDefinition
robotGetSetChannelDefinitions((ElementDefinition)robot)

else
robotPModelGetSetChannelDefinitions((ElementPModel)robot)

end if
for element in elements do

if element instanceof ElementDefinition
if not (element instanceof Region) then

elementGetSetChannelDefinitions((ElementDefinition)element)
end if

else
elementPModelGetSetChannelDefinitions((ElementPModel)element)

end if
end for

Rule 23. Robot variable get/set channel definitions

robotGetSetChannelDefinitions(robot : ElementDefinition) =

channelgetRobotPosition : Position
channelgetRobotVelocity : Velocity
channelgetRobotAcceleration : Acceleration
channelgetRobotOrientation : Orientation
channelgetRobotAngularVelocity : AngularVelocity
channelgetRobotAngularAcceleration : AngularAcceleration
channelsetRobotPosition : Position
channelsetRobotVelocity : Velocity
channelsetRobotAcceleration : Acceleration
channelsetRobotOrientation : Orientation
channelsetRobotAngularVelocity : AngularVelocity
channelsetRobotAngularAcceleration : AngularAcceleration

for attribute in robot.attributes do
channelgetRobottitleCase(attribute.name) : attribute.type
channelsetRobottitleCase(attribute.name) : attribute.type

end for
for component in robot.components do

componentGetSetChannelDefinitions(component,“Robot”)
end for

Rule 24. ElementDefinition variable get/set channel definitions

elementGetSetChannelDefinitions(element : ElementDefinition) =

channelgetRobotPosition : Position
channelgetRobotOrientation : Orientation

for attribute in robot.attributes do
channelgetRobottitleCase(attribute.name) : attribute.type
channelsetRobottitleCase(attribute.name) : attribute.type

end for
for component in robot.components do

componentGetSetChannelDefinitions(component,“Robot”)
end for
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Rule 25. Component variable get/set channel definitions

componentGetSetChannelDefinitions(element : ElementDefinition,namePrefix : Identifier) =

if; element.plurality == PLURAL then
for attribute in element.attributes do

channelgetqualifiedNamea titleCase(attribute.name)
: qualifiedNameID×attribute.type

end for
for component in element.components do

componentGetSetChannelDefinitions(component,qualifiedName)
end for

else
for attribute in element.attributes do

channelgetqualifiedNamea titleCase(attribute.name) : attribute.type
end for
for component in element.components do

componentGetSetChannelDefinitions(component,qualifiedName)
end for

end if
where

qualifiedName = namePrefixa titleCase(element.name)

Rule 26. Global assumptions about elements

elementGlobalAssumptions(arena : Arena, robot : Element,elements : Seq(Element)) =

elementGlobalDefinitions(arena, robot,elements)
arenaGlobalAssumptions(arena)
elementGlobalAssumptions(robot)
for element inelements do

elementGlobalAssumptions(element)
end for

a dynamic element.

The function environmentProcess (Rule 32) defines the body of the Environment process,

included between begin and end. The state and its initialisation are specified by two functions. The

EventTimes and EventsTimesInit schemas are specified by the function eventTimes, which takes

the inputEventMappings, the outputEventMappings, and the operationMappings as

arguments, so it can identify the needed timers. The EnvironmentState and EnvironmentStateInit

schemas are specified by environmentState, which receives the robot and elements as

arguments.

The next functions applied in Rule 32 define the actions of Environment. The RobotMovement

schema and the RoboMovementAction are characterised by robotMovementAction. CollisionDetection

and the actions that it combines in choice, by collisionDetectionAction. InputTriggers and the

InputEventMapping actions are specified by inputTriggersAction. Communication is specified

by communicationAction. The Buffer actions and their compositions in InputEventBuffers

and OutputEventBuffers are characterised in inputEventBuffers and outputEventBuffers. EventBuffers

has the same definition for all documents (in terms of the actions mentioned above), so it is specified

directly in Rule 32. Each function application takes the relevant attributes of rw as arguments.
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Rule 27. Definition of global elements

elementGlobalDefinitions(arena : Arena, robot : Element,elements : Seq(Element)) =

arena : ArenaProperty
robotInit : RobotProperty
for element inelements do

if element.plurality = SINGULAR then
if hasAttributes(element) then

element.nameInit : titleCase(element.name)Property
else

element.name : titleCase(element.name)Property
end if

else
if hasAttributes(element) then

potentialtitleCase(plural(element.name)) : P titleCase(element.name)Property
else

plural(element.name) : seq titleCase(element.name)Property
end if

end if
end for

Rule 28. Global Assumptions on the Arena

arenaGlobalAssumptions(arena : Arena) =

shapeConstraints(arena.shape)
if arena.gradient 6= null then

forconstraintinarena.gradient.properties do
generateConstraint(constraint)

end for
end if
· · ·

for region in arena.components do
elementGlobalAssumptions(region)

end for

Rule 29. Mapping Process

mappingProcess(outEvents : Seq(OutputEventMappingIR),operations : Seq(OperationMappingIR)) =

composeOutputEventMappings(outEvents)9composeOperationMappings(operations)

Rule 30. Composition of Output Event Mappings

composeOutputEventMappings(outEvents : Seq(OutputEventMappingIR)) =

if #outEvents = 0 then
Skip

else if #outEvents = 1 then
[[head(outEvents)]]OE M

else
[[head(outEvents)]]OE M 9composeOutputEventMappings(tail(outEvents))
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Rule 31. Composition of Operation Mappings

composeOperationMappings(operations : Seq(OperationMappingIR)) =

if #operations = 0 then
Skip

else if #operations = 1 then
[[head(operations)]]OM

else
[[head(operations)]]OM 9composeOperationMappings(tail(operations))

Rule 32. Environment Process

environmentProcess(rw : RWIntermediateRepresentation) =

begin
eventTimes(rw.inputEventMappings, rw.outputEventMappings, rw.operationMappings)
environmentState(rw.robot, rw.elements)
robotMovementAction(rw.arena, rw.robot, rw.elements)
collisionDetectionAction(rw.arena, rw.robot, rw.elements)
inputTriggersAction(rw.inputEventMappings)
communicationAction(rw.arena, rw.robot, rw.elements)
inputEventBuffers(rw.inputEventMappings, rw.variableMappings)
outputEventBuffers(rw.outputEventMappings, rw.operationMappings)
EventBuffers =̂ InputEventBuffers9OutputEventBuffers
EnvironmentLoop =̂ ( EnvironmentStateInit) ; µX •

RobotMovementAction; (time < timeStep)NCollisionDetection
@
(time≥ timeStep)N InputTriggers ; Communication ; stepTimer := 0

 ; X

triggerChannelsSet(rw.inputEventMappings, rw.variableMappings)
• (EnvironmentLoop J triggerChannels KEventBuffers)\ triggerChannels
end
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Rule 33. Environment Process State

environmentState(arena : Arena, robot : Robot,elements : Seq(Element)) =

EnvironmentState
robot : RobotProperty
for element in elements do

if hasAttributes(element) then
if element.plurality = PLURAL then

element.name : seq titleCase(element.name)Property
else

element.name : titleCase(element.name)Property
end if

end if
end for
time : R
stepTimer : R
EventTimes

stateEnvironmentState

EnvironmentLoop, which like EventBuffers is the same for all RoboWorld documents, is also

defined in Rule 32. The triggerChannels set is defined by triggerChannelsSet and used as the

synchronisation set for the main action specified after the • also directly in Rule 32.

The definition of inputTriggersAction uses applications of inputTrigger, defined in Rule 34,

to specify the InputEventMapping actions. As shown in Rule 34, it defines an action whose name

is formed from the name of the inputEvent argument appended with InputEventMapping.

The body of the action depends on the type of the input of the inputEvent; we show here

the case for where it is an instance of InputSometimesIR, which, as already said, represents

a conditional event. In this case, the action is a CyPhyCircus conditional (if . . .fi), with two

branches: the first is guarded by the conjunction of the conditions for the input, specified by

generateConstraintConjunction, and the second is guarded by the negation of that conjunc-

tion.

In the first branch, where the conditions hold, the occurrence of the input event is signalled

via a channel named from the name of the inputEvent, appended with Triggered. Any values

communicated by the input event must be sent to the buffer, so the actual communication depends

on the number of communications for the input (#inputEvent.input.communications).
Here, we show the case for when there are no communications so that only the value True is

communicated to indicate the occurrence of the event. After the communication, an assignment

is included. In this (multiple) assignment, a variable whose name is formed from the name of

the inputEvent, appended with Occurred, is set to True (because the event has occurred), and a

variable whose name is formed from the name of the inputEvent, appended with Timer, is set to

the current time.
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Rule 34. Input Trigger semantics

inputTrigger(inputEvent : InputEventMappingIR) =

inputEvent.name InputEventMapping =̂
if inputEvent.input instanceof InputSometimesIR then

ifgenerateConstraintConjunction(((InputSometimesIR)inputEvent.input).conditions)−→
if #((InputSometimesIR)inputEvent.input).communications = 0 then

inputEvent.nameTriggered!True−→
else · · ·
end if
inputEvent.nameOccurred, inputEvent.nameTimer := True, time

8¬ (generateConstraintConjunction(((InputSometimesIR)inputEvent.input).conditions))−→
if #((InputSometimesIR)inputEvent.input).communications = 0 then

inputEvent.nameTriggered!False−→Skip
else · · ·
end if

fi
else if · · ·
end if

In the second branch, where the conjunction of the conditions do not hold, a communication

to signal to the event buffer is generated, as in the first branch, but communicating the value False.

After the communication, we have a Skip action, instead of an assignment.

The function operationMappingDefinition (used in Rule 10) is specified in Rule 35 to

give the semantics for an operation mapping. It is a process named by appending the name of

the signature of the argument operation with OperationMapping. As defined in Rule 35, this

process does not have a state, and its main action is always the parallel composition of Semantics

and Monitor actions (also named after the operation) defined in Rule 35 (see Figure 6.10 for an

example).

The body of the Semantics action begins with a communication on the operation’s Call

channel. The parameters of the operation are iterated over in a for loop, with each parameter

added as an input (?) in the communication. After the communication, the semantics depends on the

type of the output for the operation; here, we show the case for OutputAlwaysIR, which has

statements but not conditions. In this case, communications with the Environment on get channels

are included (to obtain the values of any state components required by the statements). For exam-

ple, for goToBuilding Semantics in Figure 6.10, these are communications on getRobotPosition

and getBuildingPosition so that the positions of the robot and building are available. After the

needed variables are obtained, the semantics of each of the statements is defined, composed

in sequence ( ; ). The sequential composition is wrapped in brackets so that all the variables and

operation parameters are in scope for the semantics of all statements. Afterwards, a communication

on proceed and a recursion of the Semantics action are specified.

The body of the Monitor action also begins with a communication on the operation’s

Call channel, specified in the same way as for the Semantics action. This is followed by a

communication with the Environment on the Happened channel for the operation and a recursion
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Rule 35. Operation Mapping Semantics

operationMappingDefinition(operation : OperationMappingIR)

processoperation.signature.name OperationMapping =̂ begin

operation.signature.name Semantics =̂
operation.signature.nameCall(for param in operation.signature.parameters do ?param end for)−→
if operation.output instanceof OutputAlwaysIR then

getNeededVariablesStatement(((OutputAlwaysIR)operation.output).statements)
(outputStatementSemantics(((OutputAlwaysIR)operation.output).statements[0])
for statement in ((OutputAlwaysIR)operation.output).statements[1. .] do

; outputStatementSemantics(statement)
end for)

else if · · ·
end if ; proceed−→operation.signature.name Semantics

operation.signature.name Monitor =̂
operation.signature.nameCall(for param in operation.signature.parameters do ?param end for)−→
operation.signature.nameHappened−→operation.signature.name Monitor

• operation.signature.name Semantics J{|operation.signature.nameCall |} Koperation.signature.name Monitor

end

of the Monitor action. In the main action of the OperationMapping process (after the •), the

Semantics and Monitor actions synchronise on the operation’s Call channel.

We next present the RoboWorld tool.
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Tool support for authoring RoboWorld documents is provided by a specific plug-in for RoboTool. It

is developed in Java using the Eclipse Rich Client Platform (RCP) for developing general-purpose

applications. Here, we provide an overview of the main distinguishing features of this plug-in,

namely, extending the RoboWorld language to deal with project-specific vocabulary, in addition to

the support provided to edit sentences adhering to the underlying grammar of RoboWorld.

In Figure 7.1, we show the main screen of the RoboWorld plug-in. As an Eclipse-based

application, files are organised into projects, listed on the left panel. The highlighted project is the

one for the firefighter example. When the user clicks on any .env file, the RoboWorld Editor

opens. It has two tabs: Dictionary and RoboWorld Document. As the names suggest, the former

allows editing the project-specific dictionary, and the latter writing assumptions and mappings. In

Figure 7.1, we show the Dictionary. Using a tabular representation, we can extend the RoboWorld

lexicon by adding words that are specific to the selected project. For that, it suffices to provide its

category (for instance, N for nouns or A for adjectives, and so on), along with its inflection forms.

Whenever a new word is added to the dictionary, the plug-in automatically extends the

RoboWorld lexicon for this project, as explained in Section 4.3, and recompiles all related gram-

mars, according to the structure discussed in Section 4.1. This process is completely hidden from

the user, who does not need to understand the underlying details, for instance, the GF syntax.

Nevertheless, as we can see in the left-side of Figure 7.1, the underlying grammars (that is, .gf

files) are listed within the project such that advanced users can still inspect their contents.

According to [12], there are two predominant paradigms when writing sentences to adhere

to a CNL: structural and surface editing. In structural editing, the user mostly follow a structural
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Figure 7.1: RoboWorld plug-in in RoboTool: dictionary editor

(a) New ElementAssumption
(b) Types of ElementAssump-
tions (c) Types of Sentences

Figure 7.2: Combination of structural and surface editing

approach (for instance, clicking on predefined possibilities) that prevents the writing of invalid

sentences according to the grammar of the CNL. In surface editing, the user inputs texts with

varying degrees of guidance from the editor. In such an approach, it is possible to write sentences

that are invalid. Therefore, the validity of the sentences needs to be checked afterwards.

The RoboWorld plug-in combines both paradigms. Depending on their expertise, users can

adopt one paradigm or use a mix of both. At one side of the spectrum, sentences can be written

freely, with the support of a typical syntax complete feature. At the other side, we can write

sentences by selecting the desired structure among those supported (see Figure 7.2). The list of

supported structures is dynamically built. If the dictionary is updated, the new words are listed.

If the grammar evolves, the plug-in deals automatically with new versions. This is achieved by a

dynamic integration between our plug-in and the underlying grammars, supported by the GF API.

In Figure 7.2, we illustrate our combination of the editing paradigms. Figure 7.2a is shown

when we start writing a new element assumption. In the text field, between square brackets, we have

the type of sentence being created: ElementAssumption. The user can then write the sentence

freely, by just overwriting the text initially shown. However, we can select ElementAssumption
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and click on Help. Figure 7.2b is then shown, indicating that there are two possible ways of

describing an element assumption: using PModels or writing RWSentences. If we select the

second possibility, Figure 7.2c is shown, listing the different ways of creating RWSentences (see

Section 4.6). This guide goes until the lowest level of the grammar, when words (for instance,

nouns, adjectives, and so on) are defined. At any point, if the user knows how to write a term of a

specific grammatical category, this can be done by overwriting the text between square brackets.

Less experienced users initially benefit from the guide to write sentences, but with time the

number of interactions with the writing guidance is likely to be reduced. The flexible combination

of surface and structural editing supported by RoboTool suits users with different experience levels.





8. Conclusions

We have presented RoboWorld, a controlled natural language for documenting operational require-

ments of robotic systems. We have described the overall structured of a RoboWorld document

using a metamodel, which is defined using elements of the English grammar, such as Sentence,

Noun, and so on. A concrete grammar, defined using the Grammatical Framework, specifies in

the more detail the subset of the English language that is current accepted. RoboWorld is a very

flexible language, with an open vocabulary to define, for example, elements of the environment.

Parsing creates and intermediate representation, and two sets of model-to-model transformation

rules define a precise hybrid process-algebraic semantics written in CyPhyCircus for RoboWorld.

The concrete grammar is very powerful, allowing and enforcing correct use of inflections,

for example. The parsing to an intermediate representation groups together the sentences that

are relevant to each of the concepts primitive to RoboWorld: arena, robot, any additional entities,

and so on. The first set of model-to-model rules enrich the intermediate representation to expose

further structure in the sentences. They carry out a form of pre-processing to simplify the second

transformation, from the intermediate representation to CyPhyCircus.

The intermediate representation can be a gateway to consider semantics in several notations. We

have suggested here the translation of the CyPhyCircus models to hybrid automata for reasoning

with a model checker. Another possibility is the direct generation of a hybrid automata semantics,

which may be more suitable for model checking. Such a semantics might avoid the state explosion

arising from the use of networks of automata to reflect the structure of processes. An automata

model requires restrictions on the use of data types in the RoboWorld document, and is limited in

terms of integration with richer (reactive or probabilistic, for example) semantics. It is, however,
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appealing in terms of automated reasoning in the scope of what it can cover.

Use of RoboWorld can support several aspects of the design and verification of robotic systems,

over and above the obvious advantage of documenting assumptions about the environment that

are otherwise left explicit. RoboWorld sentences can be used to check the validity of different

models and generated simulation code. For testing, this documentation can be used to prevent the

generation of infeasible or useless test cases or, at least, eliminate such tests. Finally, operational

requirements have an important role in proof, allowing us to establish properties that do not hold

in any environment. In this paper, we have focussed on this latter form of application. We will,

however, consider all above applications of RoboWorld in future work.

Our first line of future work, however, will push the limits of RoboWorld by considering

additional case studies. RoboWorld is already very flexible: its vocabulary can be extended, and we

cater for 96 different structures for writing sentences. Our tool takes advantage of well-established

technology: the GF framework has been under development and use for more than 20 years. The

support for document writing is in line with well accepted practice in the area [12]. We can either

write documents in free form, or guided by a set of dialogues that enforce the required structure of

sentences. We can benefit, nevertheless, of a usability study.

Regarding the semantics, CyPhyCircus is a hybrid process algebra, and the challenges of

automated reasoning using hybrid models are many. Scalability requires theorem proving, and we

can benefit from Isabelle/UTP, unique in that if builds on a widely used theorem prover and the

UTP to support very rich hybrid, reactive, and concurrent models.

Automation can benefit from integrated use of theorem proving and model checking. To

translate CyPhyCircus processes or actions to a hybrid automata notation accepted by model

checkers, however, use of networks of hybrid automata is necessary. It avoids the construction of

large models arising from flattening, and make the argument for soundness of translation much

more direct. So, model checkers that are restricted to linear equations or do not support networks of

automata are not powerful enough [15, 24]In this respect, use CORA, as illustrated here, is a very

promising option, which we will work to integrate with Isabelle/UTP to enhance proof automation.



A. Complete RoboWorld Grammar

A.1 RoboWorld.gf

1 --------------------------------------------------------------------------------
2 -- Abstract grammar of RoboWorld: a CNL for robotic systems
3 --
4 -- Authors:
5 -- * James Baxter <james.baxter@york.ac.uk>
6 -- (Department of Computer Science, University of York, UK)
7 -- * Gustavo Carvalho <ghpc@cin.ufpe.br> [corresponding author]
8 -- (Centro de Informática, Universidade Federal de Pernambuco, BR)
9 -- * Ana Cavalcanti <ana.cavalcanti@york.ac.uk>,

10 -- (Department of Computer Science, University of York, UK)
11 --------------------------------------------------------------------------------
12 abstract RoboWorld =
13 RoboWorldLexicon,
14 Numeral
15 **
16 {
17

18 --------------------------------------------------------------------------------
19 cat -- closed categories
20

21 Unit ;
22

23 --------------------------------------------------------------------------------
24 fun -- functions of closed categories
25

26 -- SI base units
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27 m_Unit : Unit ;
28 meter_Unit : Unit ;
29 s_Unit : Unit ;
30 second_Unit : Unit ;
31 mole_Unit : Unit ;
32 a_Unit : Unit ;
33 ampere_Unit : Unit ;
34 k_Unit : Unit ;
35 kelvin_Unit : Unit ;
36 cd_Unit : Unit ;
37 candela_Unit : Unit ;
38 kg_Unit : Unit ;
39 kilogram_Unit : Unit ;
40

41 -- Other units
42 mm_Unit : Unit ;
43 millimeter_Unit : Unit ;
44 min_Unit : Unit ;
45 minute_Unit : Unit;
46 ms_Unit : Unit ;
47 rads_Unit : Unit ;
48

49 --------------------------------------------------------------------------------
50 cat -- ItemPhrase
51

52 BasicItem ;
53 CompoundItem ;
54 Item ;
55 ItemPhrase ;
56 ItemPhraseList ;
57

58 --------------------------------------------------------------------------------
59 fun -- ItemPhrase
60

61 -- velocity
62 mkBasicItem_single_noun : Cat.N -> BasicItem ;
63 -- odometer value
64 mkBasicItem_two_nouns : Cat.N -> Cat.N -> BasicItem

;↪→

65 -- angular velocity
66 mkBasicItem_QualifiedBI : Cat.A -> BasicItem -> BasicItem

;↪→

67 -- m/s
68 mkBasicItem_Unit : Unit -> BasicItem ;
69

70 -- m/s upwards
71 mkCompoundItem_AdverbCI : Item -> Adv -> CompoundItem ;
72 -- object initially
73 mkCompoundItem_AdverbCI_from_adjective : Item -> A -> CompoundItem ;
74 -- distance from the robot to the nest
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75 mkCompoundItem_PrepositionCI_single_ItemPhrase : BasicItem -> Prep ->
ItemPhrase -> CompoundItem ;↪→

76 -- location except the source and the nest
77 mkCompoundItem_PrepositionCI_and_list_of_ItemPhrases : BasicItem -> Prep

-> ItemPhraseList -> CompoundItem ;↪→

78 -- location except the source or the nest
79 mkCompoundItem_PrepositionCI_or_list_of_ItemPhrases : BasicItem -> Prep ->

ItemPhraseList -> CompoundItem ;↪→

80

81 -- angular velocity
82 mkItem_from_BasicItem : BasicItem -> Item ;
83 -- angular velocity of the robot
84 mkItem_from_CompoundItem : CompoundItem -> Item ;
85

86 -- it
87 mkItemPhrase_PronounIP : Cat.Pron -> ItemPhrase ;
88 -- the angular velocity
89 mkItemPhrase_DeterminedIP : Cat.Det -> Item -> ItemPhrase

;↪→

90 -- 1 position
91 mkItemPhrase_QuantifiedIP_with_digits : Cat.Digits -> Item -> ItemPhrase

;↪→

92 -- one position
93 mkItemPhrase_QuantifiedIP_with_text : Cat.Numeral -> Item -> ItemPhrase

;↪→

94 -- 0.5 m
95 mkItemPhrase_QuantifiedIP_with_float : Float -> Item -> ItemPhrase

;↪→

96 -- at least 1 position
97 mkItemPhrase_AdN_QuantifiedIP_with_digits : AdN -> Cat.Digits -> Item ->

ItemPhrase ;↪→

98 -- at least one position
99 mkItemPhrase_AdN_QuantifiedIP_with_text : AdN -> Cat.Numeral -> Item ->

ItemPhrase ;↪→

100 -- at least 0.5 m
101 mkItemPhrase_AdN_QuantifiedIP_with_float : AdN -> Float -> Item ->

ItemPhrase ;↪→

102 -- no obstacles
103 mkItemPhrase_QuantifiedIP_with_plural_Quant : Cat.Quant -> Item ->

ItemPhrase ;↪→

104 -- this obstacle
105 mkItemPhrase_QuantifiedIP_with_singular_Quant : Cat.Quant -> Item ->

ItemPhrase ;↪→

106 -- 0.0
107 mkItemPhrase_Float_Literal : Float -> ItemPhrase ;
108

109 -- [an x-width of 1 m, an y-width of 1 m]
110 mkItemPhraseList_binary : ItemPhrase -> ItemPhrase -> ItemPhraseList ;
111 -- [an x-width of 1 m, an y-width of 1 m, an z-width of 1 m]
112 mkItemPhraseList_many : ItemPhrase -> ItemPhraseList -> ItemPhraseList ;
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113

114 --------------------------------------------------------------------------------
115 cat -- RWClause
116

117 RWClause ;
118

119 --------------------------------------------------------------------------------
120 fun -- RWClause
121

122 -- the odometer of the robot is reset
123 mkRWClause_PassiveVoice_IntransitiveVerb : ItemPhrase -> V -> RWClause ;
124 -- the velocity of the robot is set to 1 m/s upward
125 mkRWClause_PassiveVoice_TransitiveVerb_Preposition_ItemPhrase : ItemPhrase

-> V2 -> Prep -> ItemPhrase -> RWClause ;↪→

126

127 -- the arena is three-dimensional
128 mkRWClause_ActiveVoice_ToBe_Adjective : ItemPhrase -> A -> RWClause

;↪→

129 -- the tank of water is either full or empty
130 mkRWClause_ActiveVoice_ToBe_Conj_Adjective_Adjective : ItemPhrase -> Conj

-> A -> A -> RWClause ;↪→

131 -- the gradient of the ground is 0.0
132 mkRWClause_ActiveVoce_ToBe_ItemPhrase : ItemPhrase -> ItemPhrase ->

RWClause ;↪→

133 -- the robot is in the origin initially
134 mkRWClause_ActiveVoice_ToBe_Preposition_ItemPhrase : ItemPhrase -> Prep ->

ItemPhrase -> RWClause ;↪→

135 -- the distance from the target to the origin is greater than 1 m
136 mkRWClause_ActiveVoice_ToBe_Comparison_ItemPhrase : ItemPhrase -> A ->

ItemPhrase -> RWClause ;↪→

137

138 -- the robot places an object in the nest
139 mkRWClause_ActiveVoice_TransitiveVerb_ItemPhrase : ItemPhrase -> V2 ->

ItemPhrase -> RWClause ;↪→

140

141 -- the robot may carry 1 object
142 mkRWClause_ActiveVoice_Modal_TransitiveVerb_ItemPhrase : ItemPhrase -> VV

-> V2 -> ItemPhrase -> RWClause ;↪→

143 -- the nest may contain up to 5 objects
144 mkRWClause_ActiveVoice_Modal_TransitiveVerb_Prep_ItemPhrase : ItemPhrase

-> VV -> V2 -> Prep -> ItemPhrase -> RWClause ;↪→

145

146 -- it is raining
147 mkRWClause_ActiveVoice_Progressive_IntransitiveVerb : ItemPhrase -> V ->

RWClause ;↪→

148 -- the robot is carrying an object
149 mkRWClause_ActiveVoice_Progressive_TransitiveVerb_ItemPhrase : ItemPhrase

-> V2 -> ItemPhrase -> RWClause ;↪→

150

151 --------------------------------------------------------------------------------
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152 cat -- RWSentence
153

154 RWSentence ;
155 RWSentenceList ;
156 RWSentences ;
157

158 --------------------------------------------------------------------------------
159 fun -- RWSentence
160

161 -- initially the robot is in the origin
162 mkRWSentence_Prefix_AdverbFromAdjective : A -> RWSentence -> RWSentence ;
163 -- then the velocity of the robot is set to 1.0 m/s upward
164 mkRWSentence_Prefix_Adverb : Adv -> RWSentence -> RWSentence ;
165

166 -- it is raining
167 mkRWSentence_PresentTense_PositivePolarity : RWClause -> RWSentence ;
168 -- it is not raining
169 mkRWSentence_PresentTense_NegativePolarity : RWClause -> RWSentence ;
170 -- it was raining
171 mkRWSentence_PastTense_PositivePolarity : RWClause -> RWSentence ;
172 -- it was not raining
173 mkRWSentence_PastTense_NegativePolarity : RWClause -> RWSentence ;
174

175 -- [the odometer of the robot is reset, the velocity of the robot is set
to 1 m/s upward]↪→

176 mkRWSentenceList_binary : RWSentence -> RWSentence -> RWSentenceList ;
177 -- [the robot places an object in the nest, the odometer of the robot is

reset, the velocity of the robot is set to 1 m/s upward]↪→

178 mkRWSentencetList_many : RWSentence -> RWSentenceList -> RWSentenceList ;
179

180 -- the velocity of the robot is set to 1 m/s upward
181 mkRWSentences_single_sentence : RWSentence -> RWSentences ;
182 -- the odometer of the robot is reset, and the velocity of the robot is

set to 1 m/s upward↪→

183 mkRWSentences_and_list_of_sentences : RWSentenceList -> RWSentences
;↪→

184 -- the event spray occurred in 3 minutes before or the operation takeOff
was called in 20 minutes before↪→

185 mkRWSentences_or_list_of_sentences : RWSentenceList -> RWSentences ;
186

187 --------------------------------------------------------------------------------
188 cat -- Conditions
189

190 Conditions ;
191

192 --------------------------------------------------------------------------------
193 fun -- Conditions
194

195 -- when the distance from the robot to the source is less than 1 m,
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196 -- the distance from the robot to the nest is more than 2 m and the robot
is carrying an object↪→

197 mkConditions_Subj_RWSentences : Subj -> RWSentences -> Conditions ;
198

199 --------------------------------------------------------------------------------
200 cat -- ArenaAssumption
201

202 ArenaAssumption ;
203

204 --------------------------------------------------------------------------------
205 fun -- ArenaAssumption
206

207 -- some locations of the arena except the source and the nest contain 1
obstacles↪→

208 mkArenaAssumption_RWSentence : RWSentence -> ArenaAssumption ;
209

210 --------------------------------------------------------------------------------
211 cat -- RobotAssumption
212

213 RobotAssumption ;
214

215 --------------------------------------------------------------------------------
216 fun -- RobotAssumption
217

218 -- the robot is a point mass
219 mkRobotAssumption_RWSentence : RWSentence -> RobotAssumption ;
220 -- the robot is defined by a diagram
221 mkRobotAssumption_PModel : RobotAssumption ;
222

223 --------------------------------------------------------------------------------
224 cat -- ElementAssumption
225

226 ElementAssumption ;
227

228 --------------------------------------------------------------------------------
229 fun -- ElementAssumption
230

231 -- the source has an x-width of 0.25 m and a y-width of 0.25 m
232 mkElementAssumption_RWSentence : RWSentence -> ElementAssumption ;
233 -- the room is defined by a diagram
234 mkElementAssumption_PModel : Item -> ElementAssumption ;
235

236 --------------------------------------------------------------------------------
237 cat -- InputEventMapping
238

239 InputEventMapping ;
240

241 --------------------------------------------------------------------------------
242 fun -- InputEventMapping
243
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244 -- when the distance from the robot to an obstacle is less than 1 m the
event obstacle occurs↪→

245 mkInputEventMapping_InputSometimes : String -> Conditions ->
InputEventMapping ;↪→

246 -- when the distance from the robot to an obstacle is less than 1 m
247 -- the event obstacle occurs and it communicates the linear velocity of

the robot↪→

248 mkInputEventMapping_InputSometimes_RWSentences : String -> Conditions ->
RWSentences -> InputEventMapping ;↪→

249 -- the event angularSpeed is always available
250 mkInputEventMapping_InputAlways : String -> InputEventMapping ;
251 -- the event angularSpeed is always available and it communicates the

angular velocity of the robot↪→

252 mkInputEventMapping_InputAlways_RWSentences : String -> RWSentences ->
InputEventMapping ;↪→

253 -- the event transferred never happens
254 mkInputEventMapping_InputNever : String -> InputEventMapping ;
255

256 --------------------------------------------------------------------------------
257 cat -- OutputEventMapping
258

259 OutputEventMapping ;
260

261 --------------------------------------------------------------------------------
262 fun -- OutputEventMapping
263

264 -- when the event takeoff occurs if it is raining the velocity of the
robot is set to 2.0 m/s upward↪→

265 mkOutputEventMapping_Sometimes : String -> Conditions -> RWSentences ->
OutputEventMapping ;↪→

266 -- when the event takeoff occurs the velocity of the robot is set to 1 m/s
upward↪→

267 mkOutputEventMapping_OutputAlways : String -> RWSentences ->
OutputEventMapping ;↪→

268 -- when the event takeoff occurs nothing happens
269 mkOutputEventMapping_NoOutput : String -> OutputEventMapping ;
270 -- the event spray is defined by a diagram where one time unit is 1.0 s
271 mkOutputEventMapping_DiagrammaticOutput : String -> Float -> Unit ->

OutputEventMapping ;↪→

272 -- when the event spray occurs if the tank of water is full the effect is
defined by a diagram where one time unit is 1.0 s↪→

273 mkOutputEventMapping_DiagrammaticOutput_Conditions : String -> Conditions
-> Float -> Unit -> OutputEventMapping ;↪→

274

275 --------------------------------------------------------------------------------
276 cat -- OperationMapping
277

278 OperationMapping ;
279

280 --------------------------------------------------------------------------------
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281 fun -- OperationMapping
282

283 -- when the operation Store() is called
284 -- as soon as the distance from the robot to the source is less than 1.0 m

the robot places an object in the nest↪→

285 mkOperationMapping_Sometimes : String -> Conditions -> RWSentences ->
OperationMapping ;↪→

286 -- when the operation move(ls,as) is called
287 -- the velocity of the robot is set to ls m/s towards the orientation of

the robot↪→

288 -- and the angular velocity of the robot is set to as rad/s
289 mkOperationMapping_OutputAlways : String -> RWSentences ->

OperationMapping ;↪→

290 -- when the operation Transfer() is called nothing happens
291 mkOperationMapping_NoOutput : String -> OperationMapping ;
292 -- the operation turnBack() is defined by a diagram where one time unit is

1.0 s↪→

293 mkOperationMapping_DiagrammaticOutput : String -> Float -> Unit ->
OperationMapping ;↪→

294 -- when the operation turnBack() is called
295 -- if it is raining the effect is defined by a diagram where one time unit

is 1.0 s↪→

296 mkOperationMapping_DiagrammaticOutput_Conditions : String -> Conditions ->
Float -> Unit -> OperationMapping ;↪→

297

298 --------------------------------------------------------------------------------
299 cat -- VariableMapping
300

301 VariableMapping ;
302

303 --------------------------------------------------------------------------------
304 fun -- VariableMapping
305

306 -- when the robot is on the floor the variable dist is incremented
307 mkVariableMapping_Conditions_RWSentences : Conditions -> RWSentence ->

VariableMapping ;↪→

308

309 --------------------------------------------------------------------------------
310 -- Help functions for RoboWorld plugin
311 fun _special_N : N;
312 fun _special_A : A;
313 fun _special_AdN : AdN;
314 fun _special_Adv : Adv;
315 fun _special_AdV : AdV;
316 fun _special_Conj : Conj;
317 fun _special_Quant : Quant;
318 fun _special_Prep : Prep;
319 fun _special_Pron : Pron;
320 fun _special_Subj : Subj;
321 fun _special_V : V;
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322 fun _special_V2 : V2;
323 fun _special_VV : VV;
324

325 fun _special_empty_V : V;
326 fun _special_Unit : Unit;
327 fun _special_BasicItem : BasicItem;
328 fun _special_CompoundItem : CompoundItem;
329 fun _special_Item : Item;
330 fun _special_ItemPhrase : ItemPhrase;
331 fun _special_ItemPhraseList : ItemPhraseList;
332 fun _special_RWSentence : RWSentence;
333 fun _special_RWSentenceList : RWSentenceList;
334 fun _special_RWSentences : RWSentences;
335 fun _special_Conditions : Conditions;
336 fun _special_ArenaAssumption : ArenaAssumption;
337 fun _special_RobotAssumption : RobotAssumption;
338 fun _special_ElementAssumption : ElementAssumption;
339 fun _special_InputEventMapping : InputEventMapping;
340 fun _special_OutputEventMapping : OutputEventMapping;
341 fun _special_OperationMapping : OperationMapping;
342 fun _special_VariableMapping : VariableMapping;
343

344 }

A.2 RoboWorldEng.gf

1 --------------------------------------------------------------------------------
2 -- Concrete grammar of RoboWorld: a CNL for robotic systems
3 --
4 -- Authors:
5 -- * James Baxter <james.baxter@york.ac.uk>
6 -- (Department of Computer Science, University of York, UK)
7 -- * Gustavo Carvalho <ghpc@cin.ufpe.br> [corresponding author]
8 -- (Centro de Informática, Universidade Federal de Pernambuco, BR)
9 -- * Ana Cavalcanti <ana.cavalcanti@york.ac.uk>,

10 -- (Department of Computer Science, University of York, UK)
11 --------------------------------------------------------------------------------
12 concrete RoboWorldEng of RoboWorld =
13 RoboWorldLexiconEng,
14 NumeralEng
15 **
16 open
17 SyntaxEng,
18 (ResEng = ResEng),
19 ParadigmsEng,
20 SymbolicEng,
21 ExtraEng,
22 Prelude,
23 MorphoEng,
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24 ParamX
25 in {
26

27 --------------------------------------------------------------------------------
28 lincat -- closed categories
29

30 Unit = CatEng.N ;
31

32 --------------------------------------------------------------------------------
33 lin -- functions of closed categories
34

35 -- SI base units
36 m_Unit = mkN "m" "m" ;
37 meter_Unit = mkN "meter" "meters" ;
38 s_Unit = mkN "s" "s" ;
39 second_Unit = mkN "second" "seconds" ;
40 mole_Unit = mkN "mole" "moles" ;
41 a_Unit = mkN "A" "A" ;
42 ampere_Unit = mkN "ampere" "amperes" ;
43 k_Unit = mkN "K" "K" ;
44 kelvin_Unit = mkN "kelvin" "kelvins" ;
45 cd_Unit = mkN "cd" "cd" ;
46 candela_Unit = mkN "candela" "candelas" ;
47 kg_Unit = mkN "kg" "kg" ;
48 kilogram_Unit = mkN "kilogram" "kilograms" ;
49

50 -- Other units
51 mm_Unit = mkN "mm" "mm" ;
52 millimeter_Unit = mkN "millimeter" "millimeters" ;
53 min_Unit = mkN "min" "min" ;
54 minute_Unit = mkN "minute" "minutes" ;
55 ms_Unit = mkN "m/s" "m/s" ;
56 rads_Unit = mkN "rad/s" "rad/s" ;
57

58 --------------------------------------------------------------------------------
59 lincat -- ItemPhrase
60

61 BasicItem = CatEng.CN ;
62 CompoundItem = CatEng.CN ;
63 Item = CatEng.CN ;
64 ItemPhrase = CatEng.NP ;
65 ItemPhraseList = ListNP ;
66

67 --------------------------------------------------------------------------------
68 lin -- ItemPhrase
69

70 mkBasicItem_single_noun n =
71 -- mkCN : N -> CN | velocity
72 mkCN (lin N n) ;
73
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74 mkBasicItem_two_nouns n1 n2 =
75 let
76 -- odometer
77 str : Str = (n1.s ! ResEng.Sg ! ResEng.Nom) ;
78 -- mkN : Str -> N -> N | odomoter, value
79 n : N = mkN str (lin N n2) ;
80 in
81 mkCN n ;
82

83 mkBasicItem_QualifiedBI adj cn =
84 -- mkCN : A -> CN -> CN | angular, velocity
85 mkCN <lin A adj : A> <cn : CN> ;
86

87 mkBasicItem_Unit unit =
88 -- mkCN : N -> CN | m/s
89 mkCN unit ;
90

91 mkCompoundItem_AdverbCI item adv =
92 -- mkCN : CN -> Adv -> CN | m/s, upwards
93 mkCN <item : CN> <lin Adv adv : Adv> ;
94

95 mkCompoundItem_AdverbCI_from_adjective item adj =
96 let
97 -- mkAdv : A -> Adv | initial
98 adv : CatEng.Adv = SyntaxEng.mkAdv (lin A adj)
99 in

100 -- mkCN : CN -> Adv -> CN | object, initially
101 mkCN item adv ;
102

103 mkCompoundItem_PrepositionCI_single_ItemPhrase basic prep itemPhrase =
104 let
105 -- mkAdv : Prep -> NP -> Adv | from, the robot to the nest
106 adv : CatEng.Adv = SyntaxEng.mkAdv (lin Prep prep)

itemPhrase↪→

107 in
108 -- mkCN : CN -> Adv -> CN | distance, from the robot to

the nest↪→

109 mkCN basic adv ;
110

111 mkCompoundItem_PrepositionCI_and_list_of_ItemPhrases basic prep list =
112 let
113 -- mkNP : Conj -> ListNP -> NP | and, [the source, the

nest]↪→

114 npAndList : NP = mkNP and_Conj list ;
115 -- mkAdv : Prep -> NP -> Adv | except, the source and the

nest↪→

116 adv : CatEng.Adv = SyntaxEng.mkAdv (lin Prep prep)
npAndList ;↪→

117 in
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118 -- mkCN : CN -> Adv -> CN | location, except the source
and the nest↪→

119 mkCN basic adv ;
120

121 mkCompoundItem_PrepositionCI_or_list_of_ItemPhrases basic prep list =
122 let
123 -- mkNP : Conj -> ListNP -> NP | or, [the source, the

nest]↪→

124 npAndList : NP = mkNP or_Conj list ;
125 -- mkAdv : Prep -> NP -> Adv | except, the source or the

nest↪→

126 adv : CatEng.Adv = SyntaxEng.mkAdv (lin Prep prep)
npAndList ;↪→

127 in
128 -- mkCN : CN -> Adv -> CN | location, except the source or

the nest↪→

129 mkCN basic adv
;↪→

130

131 mkItem_from_BasicItem basicItem =
132 basicItem ; -- angular velocity
133

134 mkItem_from_CompoundItem compoundItem =
135 compoundItem ; -- angular velocity of the robot
136

137 mkItemPhrase_PronounIP pron =
138 -- mkNP : Pron -> NP | it
139 mkNP <lin Pron pron : Pron> ;
140

141 mkItemPhrase_DeterminedIP det item =
142 -- mkNP : Det -> CN -> NP | the, angular velocity
143 mkNP <lin Det det : Det> <item : CN> ;
144

145 mkItemPhrase_QuantifiedIP_with_digits digits item =
146 let
147 -- 1
148 det : Det = (mkDet <(lin Digits digits) : Digits>) ;
149 in
150 -- mkNP : Det -> CN -> NP | 1, position
151 mkNP det item ;
152

153 mkItemPhrase_QuantifiedIP_with_text numeral item =
154 let
155 -- one
156 det : Det = (mkDet <(lin Numeral numeral) : Numeral>) ;
157 in
158 -- mkNP : Det -> CN -> NP | one, position
159 mkNP det item ;
160

161 mkItemPhrase_QuantifiedIP_with_float float item =



A.2 RoboWorldEng.gf 97

162 let
163 -- mkSymb : Str -> Symb | 0.5
164 sym : Symb = mkSymb float.s ;
165 -- symb : Symb -> Card | 0.5
166 card : Card = symb sym ;
167 -- mkDet : Card -> Det | 0.5
168 det : Det = mkDet card ;
169 in
170 -- mkNP : Det -> CN -> NP | 0.5, m
171 mkNP det item ;
172

173 mkItemPhrase_AdN_QuantifiedIP_with_digits adn digits item =
174 let
175 -- mkCard : Digits -> Card | 1
176 card : Card = mkCard <(lin Digits digits) : Digits> ;
177 -- mkCard : AdN -> Card -> Card | at least, 1
178 adnCard : Card = mkCard <(lin AdN adn) : AdN> card ;
179 -- mkDet : Card -> Det | at least 1
180 det : Det = mkDet adnCard ;
181 in
182 -- mkNP : Det -> CN -> NP | at least 1, position
183 mkNP det item ;
184

185 mkItemPhrase_AdN_QuantifiedIP_with_text adn numeral item =
186 let
187 -- mkCard : Digits -> Card | one
188 card : Card = mkCard <(lin Numeral numeral) : Numeral> ;
189 -- mkCard : AdN -> Card -> Card | at least, one
190 adnCard : Card = mkCard <(lin AdN adn) : AdN> card ;
191 -- mkDet : Card -> Det | at least one
192 det : Det = mkDet adnCard ;
193 in
194 -- mkNP : Det -> CN -> NP | at least one, position
195 mkNP det item ;
196

197 mkItemPhrase_AdN_QuantifiedIP_with_float adn float item =
198 let
199 -- mkSymb : Str -> Symb | 0.5
200 sym : Symb = mkSymb float.s ;
201 -- symb : Symb -> Card | 0.5
202 card : Card = symb sym ;
203 -- mkCard : AdN -> Card -> Card | at least 0.5
204 adnCard : Card = mkCard <(lin AdN adn) : AdN> card ;
205 -- mkDet : Card -> Det | 0.5
206 det : Det = mkDet adnCard ;
207 in
208 -- mkNP : Det -> CN -> NP | at least 0.5, m
209 mkNP det item ;
210

211 mkItemPhrase_QuantifiedIP_with_plural_Quant quant item =



98 Chapter A. Complete RoboWorld Grammar

212 let
213 -- mkDet : Quant -> Num -> Det | no, 'plNum'
214 det : Det = mkDet <(lin Quant quant) : Quant> plNum
215 in
216 -- mkNP : Det -> CN -> NP | no, obstacle
217 mkNP det item ;
218

219 mkItemPhrase_QuantifiedIP_with_singular_Quant quant item =
220 let
221 -- mkDet : Quant -> Num -> Det | this, 'sgNum'
222 det : Det = mkDet <(lin Quant quant) : Quant> sgNum
223 in
224 -- mkNP : Det -> CN -> NP | this, obstacle
225 mkNP det item ;
226

227 mkItemPhrase_Float_Literal float =
228 -- symb : Float -> NP | 0.0
229 symb float ;
230

231 mkItemPhraseList_binary itemPhrase1 itemPhrase2 =
232 -- mkListNP : NP -> NP -> ListNP | an x-width of 1 m, a y-width of

1 m↪→

233 mkListNP itemPhrase1 itemPhrase2 ;
234

235 mkItemPhraseList_many itemPhrase itemPhraseList =
236 -- mkListNP : NP -> ListNP -> ListNP | an x-width of 1 m, [a

y-width of 1 m, a z-width of 1 m]↪→

237 mkListNP itemPhrase itemPhraseList ;
238

239 --------------------------------------------------------------------------------
240 lincat -- RWClause
241

242 RWClause = CatEng.Cl ;
243

244 --------------------------------------------------------------------------------
245 lin -- RWClause
246

247 mkRWClause_PassiveVoice_IntransitiveVerb itemPhrase v =
248 let
249 -- mkV2 : V -> V2 | reset
250 -- passiveVP : V2 -> VP |

reset↪→

251 vp : VP = passiveVP (mkV2 <(lin V v) : V>)
;↪→

252 in
253 -- mkCl : NP -> VP -> Cl | the odometer of the robot, is

reset↪→

254 mkCl itemPhrase vp ;
255
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256 mkRWClause_PassiveVoice_TransitiveVerb_Preposition_ItemPhrase itemPhrase1
v2 prep itemPhrase2 =↪→

257 let
258 -- passiveVP : V2 -> VP | set
259 passiveVerb : VP = passiveVP (<(lin V2 v2) : V2>) ;
260 -- mkAdv : Prep -> NP -> Adv | to, 1 m/s upward
261 adv : CatEng.Adv = SyntaxEng.mkAdv (lin Prep prep)

itemPhrase2 ;↪→

262 -- mkVP : VP -> Adv -> VP | is set, to 1 m/s upward
263 vp : VP = mkVP passiveVerb adv ;
264 in
265 -- mkCl : NP -> VP -> Cl | the velocity of the robot, is

set to 1 m/s upward↪→

266 mkCl itemPhrase1 vp ;
267

268 mkRWClause_ActiveVoice_ToBe_Adjective itemPhrase adj =
269 -- mkCl : NP -> A -> Cl | the arena, three-dimensional
270 mkCl itemPhrase (lin A adj) ;
271

272 mkRWClause_ActiveVoice_ToBe_Conj_Adjective_Adjective itemPhrase conj adj1
adj2 =↪→

273 let
274 -- mkAP : A -> AP | full
275 ap1 : AP = <lin AP (mkAP <lin A adj1 : A>) : AP> ;
276 -- mkAP : A -> AP | empty
277 ap2 : AP = <lin AP (mkAP <lin A adj2 : A>) : AP> ;
278 -- mkAP : Conj -> AP -> AP -> AP | either ... or ...,

full, empty↪→

279 ap : AP = mkAP <lin Conj conj : Conj> ap1 ap2 ;
280 in
281 -- mkCl : NP -> AP -> Cl | the tank of water, either full

or empty↪→

282 mkCl itemPhrase ap ;
283

284 mkRWClause_ActiveVoce_ToBe_ItemPhrase itemPhrase1 itemPhrase2 =
285 -- mkCl : NP -> NP -> Cl | the gradient of the ground, 0.0
286 mkCl itemPhrase1 itemPhrase2 ;
287

288 mkRWClause_ActiveVoice_ToBe_Preposition_ItemPhrase itemPhrase1 prep
itemPhrase2 =↪→

289 let
290 -- mkAdv : Prep -> NP -> Adv | at the origin initially
291 adv : CatEng.Adv = SyntaxEng.mkAdv (lin Prep prep)

itemPhrase2 ;↪→

292 in
293 -- mkCl : NP -> Adv -> Cl | the robot, at the origin

initially↪→

294 mkCl itemPhrase1 adv ;
295
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296 mkRWClause_ActiveVoice_ToBe_Comparison_ItemPhrase itemPhrase1 adj
itemPhrase2 =↪→

297 let
298 -- mkAP : A -> NP -> AP | great, 1 m
299 ap : AP = mkAP (lin A adj) itemPhrase2 ;
300 in
301 -- mkCl : NP -> AP -> Cl | the distance from the target to

the origin, greater than 1 m↪→

302 mkCl itemPhrase1 ap ;
303

304 mkRWClause_ActiveVoice_TransitiveVerb_ItemPhrase itemPhrase1 v2
itemPhrase2 =↪→

305 let
306 -- mkVP : V2 -> NP -> VP | place, an object in the nest
307 vp : VP = mkVP <(lin V2 v2) : V2> itemPhrase2 ;
308 in
309 -- mkCl : NP -> VP -> Cl | the robot, place an object in

the nest↪→

310 mkCl itemPhrase1 vp ;
311

312 mkRWClause_ActiveVoice_Modal_TransitiveVerb_ItemPhrase itemPhrase1 vv v2
itemPhrase2 =↪→

313 let
314 -- mkVP : V2 -> NP -> VP | carry, 1 object
315 vp : VP = mkVP <(lin V2 v2) : V2> itemPhrase2 ;
316 in
317 -- mkCl : NP -> VV -> VP -> Cl | the robot, may, carry 1

object↪→

318 mkCl itemPhrase1 <(lin VV vv) : VV> vp ;
319

320 mkRWClause_ActiveVoice_Modal_TransitiveVerb_Prep_ItemPhrase itemPhrase1 vv
v2 prep itemPhrase2 =↪→

321 let
322 -- ss : Str -> SS | up to
323 preDet : Predet = <(lin Predet (ss prep.s)) : Predet> ;
324 -- mkNP : Predet -> NP -> NP | up to, 5 objects
325 np : NP = mkNP preDet itemPhrase2 ;
326 -- mkVP : V2 -> NP -> VP | contain, up to 5 objects
327 vp : VP = mkVP <(lin V2 v2) : V2> np ;
328 in
329 -- mkCl : NP -> VV -> VP -> Cl | the nest, may, contain up

to 5 objects↪→

330 mkCl itemPhrase1 <(lin VV vv) : VV> vp ;
331

332 mkRWClause_ActiveVoice_Progressive_IntransitiveVerb itemPhrase v =
333 let
334 -- mkVP : V -> VP | rain
335 -- progressiveVP : VP -> VP | rain
336 progressive : VP = progressiveVP (mkVP <(lin V v) : V>) ;
337 in
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338 -- mkCl : NP -> VP -> Cl | it, is raining
339 mkCl itemPhrase progressive ;
340

341 mkRWClause_ActiveVoice_Progressive_TransitiveVerb_ItemPhrase itemPhrase1 v2
itemPhrase2 =↪→

342 let
343 -- mkVP : V2 -> NP -> VP | carry, an object
344 -- progressiveVP : VP -> VP | carry an object
345 progressive : VP = progressiveVP (mkVP <(lin V2 v2) : V2>

itemPhrase2) ;↪→

346 in
347 -- mkCl : NP -> VP -> Cl | the robot, is carrying an object
348 mkCl itemPhrase1 progressive ;
349

350 --------------------------------------------------------------------------------
351 lincat -- RWSentence
352

353 RWSentence = CatEng.S ;
354 RWSentenceList = ListS ;
355 RWSentences = CatEng.S ;
356

357 --------------------------------------------------------------------------------
358 lin -- Sentence
359

360 mkRWSentence_Prefix_AdverbFromAdjective a sentence =
361 let
362 -- mkAdv : A -> Adv | initial
363 adv : CatEng.Adv = SyntaxEng.mkAdv <(lin A a) : A> ;
364 in
365 -- mkS : Adv -> S -> S | initial, the robot is in the

origin↪→

366 mkS adv sentence ;
367

368 mkRWSentence_Prefix_Adverb adv sentence =
369 -- mkS : Adv -> S -> S | then, the velocity of the robot is set to

1.0 m/s upward↪→

370 mkS <(lin Adv adv) : Adv> <sentence : S> ;
371

372 mkRWSentence_PresentTense_PositivePolarity clause =
373 -- mkS : Cl -> S | it is raining
374 mkS clause ;
375

376 mkRWSentence_PresentTense_NegativePolarity clause =
377 -- mkS : Pol -> Cl -> S | UncNeg, it is not raining
378 mkS UncNeg clause ;
379

380 mkRWSentence_PastTense_PositivePolarity clause =
381 -- mkS : Tense -> Cl -> S | pastTense, it was raining
382 mkS pastTense clause ;
383
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384 mkRWSentence_PastTense_NegativePolarity clause =
385 -- mkS : Tense -> Pol -> Cl -> S | pastTense, UncNeg, it was not

raining↪→

386 mkS pastTense UncNeg clause ;
387

388 mkRWSentenceList_binary sentence1 sentence2 =
389 -- mkListS : S -> S -> ListS | the odometer of the robot is reset,

the velocity of the robot is set to 1 m/s upward↪→

390 mkListS sentence1 sentence2 ;
391

392 mkRWSentencetList_many sentence sentenceList =
393 -- mkListS : S -> ListS -> ListS | the robot places an object in

the nest,↪→

394 --

[the odometer of the robot is reset, the velocity of the robot
is set to 1 m/s upward]

↪→

↪→

↪→

395 mkListS sentence sentenceList ;
396

397 mkRWSentences_single_sentence sentence =
398 sentence ; -- the velocity of the robot is set to 1 m/s upward
399

400 mkRWSentences_and_list_of_sentences sentenceList =
401 -- mkS : Conj -> ListS -> S | and_Conj, [the odometer of the robot

is reset, the velocity of the robot is set to 1 m/s upward]↪→

402 mkS and_Conj sentenceList ;
403

404 mkRWSentences_or_list_of_sentences sentenceList =
405 -- mkS : Conj -> ListS -> S | or_Conj,
406 -- [the event

spray occurred in 3 minutes before,↪→

407 -- the
operation takeOff was called in 20 minutes before]↪→

408 mkS or_Conj sentenceList ;
409

410 --------------------------------------------------------------------------------
411 lincat -- Conditions
412

413 Conditions = CatEng.Adv ;
414

415 --------------------------------------------------------------------------------
416 lin -- Conditions
417

418 mkConditions_Subj_RWSentences subj sentences =
419 -- mkAdv : Subj -> S -> Adv | when,
420 -- the distance from the robot to the

source is less than 1 m,↪→

421 -- the distance from the robot to the
nest is more than 2 m and the robot is carrying an object↪→

422 SyntaxEng.mkAdv <(lin Subj subj) : Subj> <sentences : S> ;



A.2 RoboWorldEng.gf 103

423

424 --------------------------------------------------------------------------------
425 -- auxiliary parameter types
426

427 param OutputType = OutputEvent | Operation ;
428

429 --------------------------------------------------------------------------------
430 oper -- auxiliary functions
431

432 is_defined_by_diagram : VP =
433 let
434 -- mkCN : N -> CN | diagram
435 -- mkNP : Det -> CN -> NP | a, diagram
436 np : NP = mkNP RoboWorldLexiconEng.a_Det (mkCN diagram_N)

;↪→

437 in
438 -- passiveVP : V2 -> NP -> VP | define, a diagram
439 passiveVP <(lin V2 define_V2) : V2> <(lin NP np) : NP> ;
440

441 the_Item_is_defined_by_diagram : Item -> S = \item ->
442 let
443 -- is_defined_by_diagram : VP
444 vp : VP = is_defined_by_diagram ;
445 in
446 -- mkNP : Det -> CN -> NP | the, robot
447 -- mkCl : NP -> VP -> Cl | the robot, defined by a diagram
448 -- mkS : Cl -> S | the robot is defined by a diagram
449 mkS (mkCl (mkNP <RoboWorldLexiconEng.the_Det : Det> <item

: CN>) vp) ;↪→

450

451 the_event_str : Str -> NP = \str ->
452 let
453 -- symb : Str -> NP | obstacle
454 -- mkCN : N -> NP -> CN | event, obstacle
455 cn : CN = mkCN RoboWorldLexiconEng.event_N (symb str) ;
456 in
457 -- mkNP : Det -> CN -> NP | the, event obstacle
458 mkNP RoboWorldLexiconEng.the_Det cn ;
459

460 the_operation_str : Str -> NP = \str ->
461 let
462 -- symb : Str -> NP | takeoff
463 -- mkCN : N -> NP -> CN | operation, takeoff
464 cn : CN = mkCN RoboWorldLexiconEng.operation_N (symb str)

;↪→

465 in
466 -- mkNP : Det -> CN -> NP | the, operation takeoff
467 mkNP RoboWorldLexiconEng.the_Det cn ;
468

469 the_event_str_is_always_available : Str -> Cl = \str ->
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470 let
471 -- the_event_str : Str -> NP | angularSpeed
472 np : NP = the_event_str str ;
473 -- mkVP : A -> VP | available
474 -- mkVP : AdV -> VP -> VP | always, to be available
475 vp : VP = mkVP always_AdV (mkVP available_A) ;
476 in
477 -- mkCl : NP -> VP -> Cl | the event angularSpeed, to be

always available↪→

478 mkCl np vp ;
479

480 when_the_event_Str_occurs : Str -> CatEng.Adv = \str ->
481 let
482 -- the_event_str : Str -> NP | takeoff
483 np : NP = the_event_str str ;
484 -- mkVP : V -> VP | occur
485 -- mkCl : NP -> VP -> Cl | the event takeoff, occur
486 -- mkS : Cl -> S | the event takeoff

occurs↪→

487 s : S = mkS (mkCl np (mkVP RoboWorldLexiconEng.occur_V)) ;
488 in
489 -- mkAdv : Subj -> S -> Adv | when, the event takeoff

occurs↪→

490 SyntaxEng.mkAdv RoboWorldLexiconEng.when_Subj s ;
491

492 when_the_operation_Str_is_called : Str -> CatEng.Adv = \str ->
493 let
494 -- the_event_str : Str -> NP | takeoff
495 np : NP = the_operation_str str ;
496 -- passiveVP : V2 -> VP | call
497 -- mkCl : NP -> VP -> Cl | the operation takeoff, to be

called↪→

498 -- mkS : Cl -> S | the operation takeoff is called
499 s : S = mkS (mkCl np (passiveVP

RoboWorldLexiconEng.call_V2)) ;↪→

500 in
501 -- mkAdv : Subj -> S -> Adv | when, the operation takeoff

is called↪→

502 SyntaxEng.mkAdv RoboWorldLexiconEng.when_Subj s ;
503

504 nothing_happens : S =
505 -- mkVP : V -> VP | happen
506 -- mkCl : NP -> VP -> Cl | nothing, happen
507 -- mkS : Cl -> S | nothing happens
508 mkS (mkCl nothing_NP (mkVP happen_V)) ;
509

510 where_one_time_unit_is_Str_Unit : Str -> RoboWorldEng.Unit -> CatEng.Adv =
\str,unit ->↪→

511 let
512 -- mkNumeral : Unit -> Numeral | n1_Unit
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513 -- mkDet : Numeral -> Det | one
514 -- mkCN : N -> CN | unit
515 -- mkNP : CN -> NP | unit
516 -- mkCN : N -> NP -> CN | time, unit
517 -- mkNP : Det -> CN -> NP | one, time unit
518 one_time_unit : NP = mkNP (mkDet (mkNumeral n1_Unit))

(mkCN time_N (mkNP (mkCN unit_1_N))) ;↪→

519 -- mkSymb : Str -> Symb | 1.0
520 -- symb : Symb -> Card | 1.0
521 card : Card = symb (mkSymb str) ;
522 -- mkDet : Card -> Det | 1.0
523 -- mkNP : Det -> CN -> NP | 1.0, s
524 str_unit : NP = mkNP (mkDet card) <(lin CN unit) : CN> ;
525 -- mkComp : NP -> Comp | 1.0 s
526 comp : Comp = mkComp str_unit ;
527 -- mkVP : Comp -> VP | to be 1.0 s
528 vp : VP = mkVP comp ;
529 -- mkCl : NP -> VP -> Cl | one time unit, to be 1.0

s↪→

530 -- mkS : Cl -> S | one time unit is 1.0 s
531 s : S = mkS (mkCl one_time_unit vp) ;
532 in
533 -- mkAdv : Subj -> S -> Adv | where, one time unit is 1.0

s↪→

534 SyntaxEng.mkAdv where_Subj s ;
535

536 outputSentencePrefix_Adv = table {
537 OutputEvent => when_the_event_Str_occurs ;
538 Operation => when_the_operation_Str_is_called
539 } ;
540

541 outputSentencePrefix_NP = table {
542 OutputEvent => the_event_str ;
543 Operation => the_operation_str
544 } ;
545

546 output_sometimes : OutputType -> Str -> Conditions -> RWSentences -> S =
\outputType, str, conditions, sentences ->↪→

547 let
548 -- outputSentencePrefix_Adv | when the event str occurs OR

when the operation str is called↪→

549 adv : CatEng.Adv = (outputSentencePrefix_Adv ! outputType)
str ;↪→

550 -- mkS : Adv -> S -> S | if it is raining, the velocity of
the robot is set to 2.0 m/s upward↪→

551 s : S = mkS <conditions : Adv> <sentences : S> ;
552 in
553 -- mkS : Adv -> S -> S, when the event takeoff occurs,
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554 -- if it is raining the velocity of
the robot is set to 2.0 m/s
upward

↪→

↪→

555 mkS adv s ;
556

557 output_always : OutputType -> Str -> RWSentences -> S = \outputType, str,
sentences ->↪→

558 let
559 -- outputSentencePrefix_Adv | when the event str occurs OR

when the operation str is called↪→

560 adv : CatEng.Adv = (outputSentencePrefix_Adv ! outputType)
str ;↪→

561 in
562 -- mkS : Adv -> S -> S, when the event takeoff occurs, the

velocity of the robot is set to 1.0 m/s upward↪→

563 mkS <adv : Adv> <sentences : S> ;
564

565 no_output : OutputType -> Str -> S = \outputType, str ->
566 let
567 -- outputSentencePrefix_Adv | when the event str occurs OR

when the operation str is called↪→

568 adv : CatEng.Adv = (outputSentencePrefix_Adv ! outputType)
str ;↪→

569 in
570 -- mkS : Adv -> S -> S | when the event takeoff occurs,

nothing happens↪→

571 mkS adv nothing_happens ;
572

573 diagrammatic_output : OutputType -> Str -> Str -> RoboWorldEng.Unit -> S =
\outputType, str, float, unit ->↪→

574 let
575 -- outputSentencePrefix_NP | the event str OR the

operation str↪→

576 np : NP = (outputSentencePrefix_NP ! outputType) str ;
577 -- is_defined_by_diagram : VP
578 defined_by : VP = is_defined_by_diagram ;
579 -- where_one_time_unit_is_Str_Unit : Str -> Unit -> Adv
580 adv : CatEng.Adv = where_one_time_unit_is_Str_Unit float

(lin Unit unit) ;↪→

581 -- mkVP : VP -> Adv -> VP ; to be defined by a diagram,
where one time unit is 1.0 s↪→

582 vp : VP = mkVP defined_by adv ;
583 in
584 -- mkCl : NP -> VP -> Cl | the event spray, to be defined

by a diagram where one time unit is 1.0 s↪→

585 -- mkS : Cl -> S | the event spray is defined by a diagram
where one time unit is 1.0 s↪→

586 mkS (mkCl np vp);
587
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588 diagrammatic_output_conditions : OutputType -> Str -> Conditions -> Str ->
RoboWorldEng.Unit -> S =↪→

589 \outputType, str, conditions, float, unit ->
590 let
591 -- mkCN : N -> CN | effect
592 -- mkNP : Det -> CN -> NP | the, effect
593 np : NP = mkNP RoboWorldEng.the_Det (mkCN

RoboWorldEng.effect_N) ;↪→

594 -- is_defined_by_diagram : VP
595 defined_by : VP = is_defined_by_diagram ;
596 -- where_one_time_unit_is_Str_Unit : Str -> Unit -> Adv
597 adv : CatEng.Adv = where_one_time_unit_is_Str_Unit float

(lin Unit unit) ;↪→

598 -- mkVP : VP -> Adv -> VP ; to be defined by a diagram,
where one time unit is 1.0 s↪→

599 vp : VP = mkVP defined_by adv ;
600 -- mkCl : NP -> VP -> Cl | the effect, to be defined by a

diagram where one time unit is 1.0 s↪→

601 s1 = mkS (mkCl np vp) ;
602 -- mkS : Adv -> S -> S | if the tank of water is full, the

effect is defined by a diagram where one time unit is
1.0 s

↪→

↪→

603 s2 : S = mkS <conditions : Adv> <s1 : S> ;
604 -- outputSentencePrefix_Adv | when the event str occurs OR

when the operation str is called↪→

605 adv2 : CatEng.Adv = (outputSentencePrefix_Adv !
outputType) str ;↪→

606 in
607 -- mkS : Adv -> S -> S | when the event spray occurs,
608 -- if the tank of water is full the

effect is defined by a diagram where one time unit is
1.0 s

↪→

↪→

609 mkS adv2 s2 ;
610

611 --------------------------------------------------------------------------------
612 lincat -- ArenaAssumption
613

614 ArenaAssumption = CatEng.S ;
615

616 --------------------------------------------------------------------------------
617 lin -- ArenaAssumption
618

619 mkArenaAssumption_RWSentence sentence =
620 sentence ; -- some locations of the arena except the source and

the nest contain 1 obstacles↪→

621

622 --------------------------------------------------------------------------------
623 lincat -- RobotAssumption
624

625 RobotAssumption = CatEng.S ;
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626

627 --------------------------------------------------------------------------------
628 lin -- RobotAssumption
629

630 mkRobotAssumption_RWSentence sentence =
631 sentence ; -- the robot is a point mass
632

633 mkRobotAssumption_PModel =
634 let
635 -- mkBasicItem_single_noun : N -> BasicItem | robot
636 -- mkItem_from_BasicItem : BasicItem -> Item | robot
637 item : Item = mkItem_from_BasicItem

(mkBasicItem_single_noun RoboWorldLexiconEng.robot_N);↪→

638 in
639 -- the_Item_is_defined_by_diagram : Item -> S | robot
640 the_Item_is_defined_by_diagram item;
641

642 --------------------------------------------------------------------------------
643 lincat -- ElementAssumption
644

645 ElementAssumption = CatEng.S ;
646

647 --------------------------------------------------------------------------------
648 lin -- ElementAssumption
649

650 mkElementAssumption_RWSentence sentence =
651 sentence ; -- the source has an x-width of 0.25 m and a y-width of

0.25 m↪→

652

653 mkElementAssumption_PModel item =
654 -- the_Item_is_defined_by_diagram : Item -> S | room
655 the_Item_is_defined_by_diagram (lin Item (lin CN item))

;↪→

656

657 --------------------------------------------------------------------------------
658 lincat -- InputEventMapping
659

660 InputEventMapping = CatEng.S ;
661

662 --------------------------------------------------------------------------------
663 lin -- InputEventMapping
664

665 mkInputEventMapping_InputSometimes str conditions =
666 let
667 -- the_event_str : Str -> NP | obstacle
668 np : NP = the_event_str str.s ;
669 -- mkVP : V -> VP | occur
670 vp : VP = mkVP RoboWorldLexiconEng.occur_V ;
671 -- mkCl : NP -> VP -> Cl | the event obstacle, occur
672 -- mkS : Cl -> S | the event obstacle occurs
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673 s : S = mkS (mkCl np vp) ;
674 in
675 -- mkS : Adv -> S -> S | when the distance from the robot

to an obstacle is less than 1 m the event obstacle
occurs

↪→

↪→

676 mkS conditions s ;
677

678 mkInputEventMapping_InputSometimes_RWSentences str conditions sentences =
679 let
680 -- the_event_str : Str -> NP | obstacle
681 np : NP = the_event_str str.s ;
682 -- mkVP : V -> VP | occur
683 vp : VP = mkVP RoboWorldLexiconEng.occur_V ;
684 -- mkCl : NP -> VP -> Cl | the event obstacle, occur
685 -- mkS : Cl -> S | the event obstacle occurs
686 s : S = mkS (mkCl np vp) ;
687 in
688 -- mkListS : S -> S -> ListS | the event obstacle occurs,

it communicates the linear velocity of the robot↪→

689 -- mkS : Conj -> List -> S | and, [the event obstacle
occurs, it communicates the linear velocity of the
robot]

↪→

↪→

690 -- mkS : Adv -> S -> S | when the distance from the robot
to an obstacle is less than 1 m,↪→

691 -- the event obstacle occurs and it
communicates the linear velocity of the robot↪→

692 mkS conditions (mkS and_Conj (mkListS s sentences)) ;
693

694 mkInputEventMapping_InputAlways str =
695 -- the_event_str_is_always_available : Str -> Cl | angularSpeed
696 -- mkS : Cl -> S | the event angularSpeed is always available
697 mkS (the_event_str_is_always_available str.s) ;
698

699 mkInputEventMapping_InputAlways_RWSentences str sentences =
700 let
701 -- the_event_str_is_always_available : Str -> Cl |

angularSpeed↪→

702 -- mkS : Cl -> S | the event angularSpeed is always
available↪→

703 s : S = mkS (the_event_str_is_always_available str.s) ;
704 in
705 -- mkListS : S -> S -> ListS | the event angularSpeed is

always available,↪→

706 -- it communicates the angular
velocity of the robot↪→

707 -- mkS : Conj -> List -> S | and,
708 --

[the event angularSpeed is always available,↪→

709 -- it communicates the angular
velocity of the robot]↪→
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710 mkS and_Conj (mkListS s sentences) ;
711

712 mkInputEventMapping_InputNever str =
713 let
714 -- the_event_str : Str -> NP, transferred
715 np : NP = the_event_str str.s ;
716 -- mkVP : V -> VP | happen
717 -- mkVP : AdV -> VP -> VP | never, happen
718 vp : VP = mkVP never_AdV (mkVP happen_V) ;
719 in
720 -- mkCl -> NP -> VP -> Cl | the event transferred, never

happen↪→

721 -- mkS : Cl -> S | the event transferred never happens
722 mkS (mkCl np vp) ;
723

724 --------------------------------------------------------------------------------
725 lincat -- OutputEventMapping
726

727 OutputEventMapping = CatEng.S ;
728

729 --------------------------------------------------------------------------------
730 lin -- OutputEventMapping
731

732 mkOutputEventMapping_Sometimes eventName conditions sentences =
733 -- output_sometimes : OutputType -> Str -> Conditions ->

RWSentences -> S |↪→

734 -- OutputEvent, takeoff, if it is raining, the velocity of the
robot is set to 2.0 m/s upward↪→

735 output_sometimes OutputEvent eventName.s (lin Conditions
conditions) (lin RWSentences sentences) ;↪→

736

737 mkOutputEventMapping_OutputAlways eventName sentences =
738 -- output_always : OutputType -> Str -> RWSentences -> S |
739 -- OutputEvent, takeoff, the velocity of the robot is set to 1.0

m/s upward↪→

740 output_always OutputEvent eventName.s (lin RWSentences sentences)
;↪→

741

742 mkOutputEventMapping_NoOutput eventName =
743 -- no_output : OutputType -> Str -> S |
744 -- OutputEvent, takeoff
745 no_output OutputEvent eventName.s ;
746

747 mkOutputEventMapping_DiagrammaticOutput eventName float unit =
748 -- diagrammatic_output : OutputType -> Str -> Str ->

RoboWorldEng.Unit -> S |↪→

749 -- OutputEvent, spray, 1.0, s
750 diagrammatic_output OutputEvent eventName.s float.s (lin Unit

unit) ;↪→

751
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752 mkOutputEventMapping_DiagrammaticOutput_Conditions eventName conditions
float unit =↪→

753 -- diagrammatic_output_conditions : OutputType -> Str ->
Conditions -> Str -> RoboWorldEng.Unit -> S |↪→

754 -- OutputEvent, spray, if the tank of water is full, 1.0, s
755 diagrammatic_output_conditions OutputEvent eventName.s (lin

Conditions conditions) float.s (lin Unit unit) ;↪→

756

757 --------------------------------------------------------------------------------
758 lincat -- OperationMapping
759

760 OperationMapping = CatEng.S ;
761

762 --------------------------------------------------------------------------------
763 lin -- OperationMapping
764

765 mkOperationMapping_Sometimes eventName conditions sentences =
766 -- output_sometimes : OutputType -> Str -> Conditions ->

RWSentences -> S |↪→

767 -- Operation, Store(), as soon as the distance from the robot to
the source is less than 1.0 m,↪→

768 -- the robot places an object in the nest
769 output_sometimes Operation eventName.s (lin Conditions conditions)

(lin RWSentences sentences) ;↪→

770

771 mkOperationMapping_OutputAlways eventName sentences =
772 -- output_always : OutputType -> Str -> RWSentences -> S |
773 -- Operation, move(ls,as), the velocity of the robot is set to ls

m/s towards the orientation of the robot↪→

774 -- and the angular velocity of the robot is set to as rad/s
775 output_always Operation eventName.s (lin RWSentences sentences) ;
776

777 mkOperationMapping_NoOutput eventName =
778 -- no_output : OutputType -> Str -> S |
779 -- Operation, Transfer()
780 no_output Operation eventName.s ;
781

782 mkOperationMapping_DiagrammaticOutput eventName float unit =
783 -- diagrammatic_output : OutputType -> Str -> Str ->

RoboWorldEng.Unit -> S |↪→

784 -- Operation, turnBack(), 1.0, s
785 diagrammatic_output Operation eventName.s float.s (lin Unit unit)

;↪→

786

787 mkOperationMapping_DiagrammaticOutput_Conditions eventName conditions
float unit =↪→

788 -- diagrammatic_output_conditions : OutputType -> Str ->
Conditions -> Str -> RoboWorldEng.Unit -> S |↪→

789 -- Operation, turnBack(), if it is raining, 1.0, s
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790 diagrammatic_output_conditions Operation eventName.s (lin
Conditions conditions) float.s (lin Unit unit) ;↪→

791

792 --------------------------------------------------------------------------------
793 lincat -- VariableMapping
794

795 VariableMapping = CatEng.S ;
796

797 --------------------------------------------------------------------------------
798 lin -- VariableMapping
799

800 mkVariableMapping_Conditions_RWSentences conditions sentence =
801 -- mkS : Adv -> S -> S | when the robot is on the floor, the

variable dist is incremented↪→

802 mkS conditions sentence ;
803

804 --------------------------------------------------------------------------------
805 -- Help functions for RoboWorld plugin
806 lin _special_N = mkN "[N]" "[N]";
807 lin _special_A = mkA "[A]" "[A]";
808 lin _special_AdN = ParadigmsEng.mkAdN "[AdN]";
809 lin _special_Adv = ParadigmsEng.mkAdv "[Adv]";
810 lin _special_AdV = mkAdV "[AdV]";
811 lin _special_Conj = mkConj "[Conj]";
812 lin _special_Quant = ParadigmsEng.mkQuant "[Quant]" "[Quant]" "[Quant]" "[Quant]"

;↪→

813 lin _special_Prep = mkPrep "[Prep]";
814 lin _special_Pron = MorphoEng.mkPron "[Pron]" "[Pron]" "[Pron]" "[Pron]" singular

P3 nonhuman;↪→

815 lin _special_Subj = mkSubj "[Subj]";
816 lin _special_V = mkV "[V]" "[V]" "[V]" "[V]" "[V]";
817 lin _special_V2 = mkV2 (mkV "[V2]" "[V2]" "[V2]" "[V2]" "[V2]");
818 lin _special_VV = mkVV (mkV "[VV]");
819

820 lin _special_empty_V = mkV "" "" "" "" "";
821 lin _special_Unit = mkN "[Unit]" "[Unit]";
822 lin _special_BasicItem = mkCN (mkN "[BasicItem]" "[BasicItem]");
823 lin _special_CompoundItem = mkCN (mkN "[CompoundItem]" "[CompoundItem]");
824 lin _special_Item = mkCN (mkN "[Item]" "[Item]");
825 lin _special_ItemPhrase = mkNP (mkN "[ItemPhrase]" "[ItemPhrase]");
826 lin _special_ItemPhraseList = mkListNP (mkNP (mkN "[ItemPhrase]" "[ItemPhrase]"))

(mkNP (mkN "[ItemPhrase]" "[ItemPhrase]"));↪→

827 lin _special_RWSentence = mkS (mkCl (mkNP (mkN "[RWSentence]" "[RWSentence]"))
_special_empty_V);↪→

828 lin _special_RWSentenceList = mkListS (mkS (mkCl (mkNP (mkN "[RWSentenceList]"
"[RWSentenceList]")) _special_empty_V))↪→

829 (mkS (mkCl (mkNP (mkN "[RWSentenceList]"
"[RWSentenceList]")) _special_empty_V));↪→

830 lin _special_RWSentences = mkS (mkCl (mkNP (mkN "[RWSentences]" "[RWSentences]"))
_special_empty_V);↪→
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831 lin _special_Conditions = ParadigmsEng.mkAdv "[Conditions]";
832 lin _special_ArenaAssumption = mkS (mkCl (mkNP (mkN "[ArenaAssumption]"

"[ArenaAssumption]")) _special_empty_V);↪→

833 lin _special_RobotAssumption = mkS (mkCl (mkNP (mkN "[RobotAssumption]"
"[RobotAssumption]")) _special_empty_V);↪→

834 lin _special_ElementAssumption = mkS (mkCl (mkNP (mkN "[ElementAssumption]"
"[ElementAssumption]")) _special_empty_V);↪→

835 lin _special_InputEventMapping = mkS (mkCl (mkNP (mkN "[InputEventMapping]"
"[InputEventMapping]")) _special_empty_V);↪→

836 lin _special_OutputEventMapping = mkS (mkCl (mkNP (mkN "[OutputEventMapping]"
"[OutputEventMapping]")) _special_empty_V);↪→

837 lin _special_OperationMapping = mkS (mkCl (mkNP (mkN "[OperationMapping]"
"[OperationMapping]")) _special_empty_V);↪→

838 lin _special_VariableMapping = mkS (mkCl (mkNP (mkN "[VariableMapping]"
"[VariableMapping]")) _special_empty_V);↪→

839

840 }

A.3 RoboWorldLexicon.gf

1 --------------------------------------------------------------------------------
2 -- Abstract grammar of RoboWorldLexicon: a lexicon for robotic systems
3 --
4 -- Authors:
5 -- * James Baxter <james.baxter@york.ac.uk>
6 -- (Department of Computer Science, University of York, UK)
7 -- * Gustavo Carvalho <ghpc@cin.ufpe.br> [corresponding author]
8 -- (Centro de Informática, Universidade Federal de Pernambuco, BR)
9 -- * Ana Cavalcanti <ana.cavalcanti@york.ac.uk>,

10 -- (Department of Computer Science, University of York, UK)
11 --------------------------------------------------------------------------------
12 abstract RoboWorldLexicon =
13 Cat
14 **
15 {
16

17 --
18 fun _1D_A : A;
19 fun _2D_A : A;
20 fun _3D_A : A;
21

22 -- A
23 fun a_Det : Det;
24 fun after_Prep : Prep;
25 fun angular_A : A;
26 fun aPl_Det : Det;
27 fun arena_N : N;
28 fun asap_Subj : Subj;
29 fun at_Prep : Prep;
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30 fun at_least_AdN : AdN;
31 fun available_A : A;
32

33 -- B
34 fun before_Adv : Adv;
35 fun block_V2 : V2;
36 fun box_N : N;
37

38 -- C
39 fun can_VV : VV;
40 fun call_V : V;
41 fun call_V2 : V2;
42 fun carry_V2 : V2;
43 fun circle_N : N;
44 fun closed_A : A;
45 fun communicate_V2 : V2;
46 fun contain_V2 : V2;
47 fun cylinder_N : N;
48

49 -- D
50 fun define_V2 : V2;
51 fun depth_N : N;
52 fun diagram_N : N;
53 fun dimension_N : N;
54 fun direction_N : N;
55 fun distance_N : N;
56 fun downward_Adv : Adv;
57 fun downwards_Adv : Adv;
58

59 -- E
60 fun effect_N : N;
61 fun either7or_DConj : Conj;
62 fun event_N : N;
63

64 -- F
65 fun floor_N : N;
66 fun from_Prep : Prep;
67

68 -- G
69 fun gradient_N : N;
70 fun great_A : A;
71 fun ground_N : N;
72

73 -- H
74 fun have_V : V;
75 fun have_V2 : V2;
76 fun happen_V : V;
77 fun height_N : N;
78

79 -- I
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80 fun if_Subj : Subj;
81 fun in_Prep : Prep;
82 fun initial_A : A;
83 fun inside_Prep : Prep;
84 fun it_Pron : Pron;
85

86 -- J
87

88 -- K
89

90 -- L
91 fun less_than_A : A;
92

93 -- M
94 fun magnitude_N : N;
95 fun mass_N : N;
96 fun may_1_VV : VV; -- be possible
97 fun minus_Prep : Prep;
98 fun movement_N : N;
99

100 -- N
101 fun never_AdV : AdV;
102 fun neither7nor_DConj : Conj;
103 fun no_Quant : Quant;
104

105 -- O
106 fun obstacle_N : N;
107 fun occur_V : V;
108 fun occurrence_N : N;
109 fun odometer_N : N;
110 fun of_Prep : Prep;
111 fun on_Prep : Prep;
112 fun one_dimensional_A : A;
113 fun operation_N : N;
114 fun orientation_N : N;
115 fun output_N : N;
116

117 -- P
118 fun place_V2 : V2;
119 fun plus_Prep : Prep;
120 fun point_N : N;
121 fun position_N : N;
122 fun pose_N : N;
123

124 -- Q
125 fun quarter_N : N;
126

127 -- R
128 fun receive_V2 : V2;
129 fun region_N : N;
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130 fun reset_V : V;
131 fun robot_N : N;
132

133 -- S
134 fun sequence_N : N;
135 fun send_V2 : V2;
136 fun set_V2 : V2;
137 fun speed_N : N;
138 fun sphere_N : N;
139 fun square_N : N;
140

141 -- T
142 fun take_V2 : V2;
143 fun the_Det : Det;
144 fun then_Adv : Adv;
145 fun thePl_Det : Det;
146 fun three_dimensional_A : A;
147 fun through_Prep : Prep ;
148 fun time_N : N;
149 fun times_Prep : Prep;
150 fun to_Prep : Prep;
151 fun towards_Prep : Prep;
152 fun two_dimensional_A : A;
153

154 -- U
155 fun under_Prep : Prep;
156 fun unit_1_N : N;
157 fun up_to_Prep : Prep;
158 fun upward_Adv : Adv;
159 fun upwards_Adv : Adv;
160

161 -- V
162 fun value_N : N;
163 fun variable_N : N;
164 fun velocity_N : N;
165

166 -- X
167 fun x_position_N : N;
168 fun x_width_N : N;
169

170 -- W
171 fun when_Subj : Subj;
172 fun where_Subj : Subj;
173 fun width_N : N;
174 fun wind_N : N;
175 fun within_Prep : Prep;
176

177 -- Y
178 fun y_position_N : N;
179 fun y_width_N : N;
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180

181 -- Z
182 fun z_position_N : N;
183 fun z_width_N : N;
184

185 }

A.4 RoboWorldLexiconEng.gf

1 --------------------------------------------------------------------------------
2 -- Concrete grammar of RoboWorldLexicon: a lexicon for robotic systems
3 --
4 -- Authors:
5 -- * James Baxter <james.baxter@york.ac.uk>
6 -- (Department of Computer Science, University of York, UK)
7 -- * Gustavo Carvalho <ghpc@cin.ufpe.br> [corresponding author]
8 -- (Centro de Informática, Universidade Federal de Pernambuco, BR)
9 -- * Ana Cavalcanti <ana.cavalcanti@york.ac.uk>,

10 -- (Department of Computer Science, University of York, UK)
11 --------------------------------------------------------------------------------
12 concrete RoboWorldLexiconEng of RoboWorldLexicon =
13 CatEng
14 **
15 open
16 MorphoEng,
17 ResEng,
18 ParadigmsEng,
19 IrregEng,
20 Prelude
21 in {
22

23 --
24 lin _1D_A = mkA "1D" "IRREG";
25 lin _2D_A = mkA "2D" "IRREG";
26 lin _3D_A = mkA "3D" "IRREG";
27

28 -- A
29 lin a_Det = mkDeterminer singular "a" | mkDeterminer singular "an";
30 lin after_Prep = mkPrep "after";
31 lin angular_A = compoundA (mkA "angular");
32 lin aPl_Det = mkDeterminer plural "";
33 lin arena_N = mkN "arena" "arenas";
34 lin asap_Subj = mkSubj "as soon as" ;
35 lin at_Prep = mkPrep "at";
36 lin at_least_AdN = mkAdN "at least";
37 lin available_A = compoundA (mkA "available");
38

39 -- B
40 lin before_Adv = mkAdv "before";
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41 lin block_V2 = mkV2 (mkV "block" "blocks" "blocked" "blocked" "blocking");
42 lin box_N = mkN "box" "boxes";
43

44 -- C
45 lin can_VV = {
46 s = table {
47 VVF VInf => ["be able to"] ;
48 VVF VPres => "can" ;
49 VVF VPPart => ["been able to"] ;
50 VVF VPresPart => ["being able to"] ;
51 VVF VPast => "could" ;
52 VVPastNeg => "couldn't" ;
53 VVPresNeg => "can't"
54 } ;
55 p = [] ;
56 typ = VVAux
57 } ;
58 lin call_V = mkV "call" "calls" "called" "called" "calling";
59 lin call_V2 = mkV2 (mkV "call" "calls" "called" "called" "calling");
60 lin carry_V2 = mkV2 (mkV "carry" "carries" "carried" "carried"

"carrying");↪→

61 lin circle_N = mkN "circle" "circles";
62 lin closed_A = mkA "closed" "closed";
63 lin communicate_V2 = mkV2 (mkV "communicate" "communicates" "communicated"

"communicated" "communicating");↪→

64 lin contain_V2 = mkV2 (mkV "contain" "contains" "contained" "contained"
"containing");↪→

65 lin cylinder_N = mkN "cylinder" "cylinders";
66

67 -- D
68 lin define_V2 = mkV2 (mkV "define" "defines" "defined" "defined"

"defining");↪→

69 lin depth_N = mkN "depth" "depths";
70 lin diagram_N = mkN "diagram" "diagrams";
71 lin dimension_N = mkN "dimension" "dimensions";
72 lin direction_N = mkN "direction" "directions";
73 lin distance_N = mkN "distance" "distances";
74 lin downward_Adv = mkAdv "downward";
75 lin downwards_Adv = mkAdv "downwards";
76

77 -- E
78 lin effect_N = mkN "effect" "effects";
79 lin either7or_DConj = mkConj "either" "or" singular ;
80 lin event_N = mkN "event" "events";
81

82 -- F
83 lin floor_N = mkN "floor" "floors";
84 lin from_Prep = mkPrep "from";
85

86 -- G
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87 lin gradient_N = mkN "gradient" "gradients";
88 lin great_A = mkA "great" "greater";
89 lin ground_N = mkN "ground" "grounds";
90

91 -- H
92 lin have_V = IrregEng.have_V;
93 lin have_V2 = mkV2 (IrregEng.have_V);
94 lin happen_V = mkV "happen" "happens" "happened" "happened" "happening";
95 lin height_N = mkN "height" "heights";
96

97 -- I
98 lin if_Subj = mkSubj "if";
99 lin in_Prep = mkPrep "in";

100 lin initial_A = compoundA (mkA "initial");
101 lin inside_Prep = mkPrep "inside";
102 lin it_Pron = mkPron "it" "it" "its" "its" singular P3 nonhuman;
103

104 -- J
105

106 -- K
107

108 -- L
109 lin less_than_A = mkA "less" "less";
110

111 -- M
112 lin magnitude_N = mkN "magnitude" ;
113 lin mass_N = mkN "mass" "masses";
114 lin may_1_VV = {
115 s = table {
116 VVF VInf => ["be possible to"] ;
117 VVF VPres => "may" ;
118 VVF VPPart => ["been possible to"] ;
119 VVF VPresPart => ["being possible to"] ;
120 VVF VPast => "might" ;
121 VVPastNeg => "mightn't" ;
122 VVPresNeg => "may not"
123 } ;
124 p = [] ;
125 typ = VVAux
126 } ;
127 lin minus_Prep = mkPrep "minus";
128 lin movement_N = mkN "movement" "movement";
129

130 -- N
131 lin never_AdV = mkAdV "never" ;
132 lin neither7nor_DConj = mkConj "neither" "nor" singular;
133 lin no_Quant = mkQuant "no" "no" "none" "none" ;
134

135 -- O
136 lin obstacle_N = mkN "obstacle" "obstacles";
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137 lin odometer_N = mkN "odometer" "odometers";
138 lin occur_V = mkV "occur" "occurs" "occurred" "occurred" "occurring";
139 lin occurrence_N = mkN "occurrence" "occurrences";
140 lin of_Prep = mkPrep "of";
141 lin on_Prep = mkPrep "on";
142 lin one_dimensional_A = compoundA (mkA "one-dimensional");
143 lin operation_N = mkN "operation" "operations";
144 lin orientation_N = mkN "orientation" ;
145 lin output_N = mkN "output" "IRREG";
146

147 -- P
148 lin place_V2 = mkV2 (mkV "place" "places" "placed" "placed" "placing");
149 lin plus_Prep = mkPrep "plus";
150 lin point_N = mkN "point" "points";
151 lin position_N = mkN "position" "positions";
152 lin pose_N = mkN "pose" "poses";
153

154 -- Q
155 lin quarter_N = mkN "quarter" "quarters";
156

157 -- R
158 lin receive_V2 = mkV2 (mkV "receive" "receives" "received" "received"

"receiving");↪→

159 lin region_N = mkN "region" "regions";
160 lin reset_V = mkV "reset" "resets" "reset" "reset" "resetting";
161 lin robot_N = mkN "robot";
162

163 -- S
164 lin sequence_N = mkN "sequence" "sequences";
165 lin send_V2 = mkV2 (IrregEng.send_V);
166 lin set_V2 = mkV2 (IrregEng.set_V);
167 lin speed_N = mkN "speed" "speeds";
168 lin sphere_N = mkN "sphere" "spheres";
169 lin square_N = mkN "square" "squares";
170

171 -- T
172 lin take_V2 = mkV2 (mkV "take" "takes" "took" "taken" "taking");
173 lin the_Det = mkDeterminer singular "the";
174 lin then_Adv = mkAdv "then" ;
175 lin thePl_Det = mkDeterminer plural "the";
176 lin three_dimensional_A = compoundA (mkA "three-dimensional");
177 lin through_Prep = mkPrep "through";
178 lin time_N = mkN "time" "times";
179 lin times_Prep = mkPrep "times";
180 lin to_Prep = mkPrep "to";
181 lin towards_Prep = mkPrep "towards";
182 lin two_dimensional_A = compoundA (mkA "two-dimensional");
183

184 -- U
185 lin under_Prep = mkPrep "under";
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186 lin unit_1_N = mkN "unit" "units";
187 lin up_to_Prep = mkPrep "up to";
188 lin upward_Adv = mkAdv "upward";
189 lin upwards_Adv = mkAdv "upwards";
190

191 -- V
192 lin value_N = mkN "value" "values";
193 lin variable_N = mkN "variable" "variables";
194 lin velocity_N = mkN "velocity";
195

196 -- X
197 lin x_position_N = mkN "x-position" "x-positions";
198 lin x_width_N = mkN "x-width" "x-widths";
199

200 -- W
201 lin when_Subj = mkSubj "when";
202 lin where_Subj = mkSubj "where";
203 lin width_N = mkN "width" "widths";
204 lin wind_N = mkN "wind" "winds";
205 lin within_Prep = mkPrep "within";
206

207 -- Y
208 lin y_position_N = mkN "y-position" "y-positions";
209 lin y_width_N = mkN "y-width" "y-widths";
210

211 -- Z
212 lin z_position_N = mkN "z-position" "z-positions";
213 lin z_width_N = mkN "z-width" "z-widths";
214

215 }





B. Complete RoboWorld MetaModel

1 import _'ecore.xml.type' : 'http ://www.eclipse.org/emf /2003/ XMLType ';
2

3 package RoboWorldMM : RoboWorldMM = 'http ://www.robocalc.circus/
↪→ RoboWorldMM '

4 {
5 package RoboChart : RoboChart = 'http ://www.robocalc.circus/RoboChart

↪→ '
6 {
7 class RCOperation;
8 class RCIntegerExp;
9 }

10 package PhysMod : PhysMod = 'http ://www.robocalc.circus/PhysMod '
11 {
12 class PModel;
13 class Instantiation;
14 }
15 package GF : GF = 'http ://www.grammaticalframework.org'
16 {
17 datatype Quantifier : 'java.lang.String ' { serializable };
18 datatype Preposition : 'java.lang.String ' { serializable };
19 datatype Pronoun : 'java.lang.String ' { serializable };
20 datatype Noun : 'java.lang.String ' { serializable };
21 datatype Determiner : 'java.lang.String ' { serializable };
22 datatype Adjective : 'java.lang.String ' { serializable };
23 datatype Adverb : 'java.lang.String ' { serializable };
24 datatype Subjunction : 'java.lang.String ' { serializable };
25 }
26 abstract class ItemPhrase;
27 class PronounIP extends ItemPhrase
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28 {
29 attribute pronoun : GF:: Pronoun [1];
30 }
31 class DeterminedIP extends ItemPhrase
32 {
33 property item : Item [1];
34 attribute determiner : GF:: Determiner [1];
35 }
36 class QualifiedBI extends BasicItem
37 {
38 property basicitem : BasicItem [1];
39 attribute adjective : GF:: Adjective [1];
40 }
41 class QuantifiedIP extends ItemPhrase
42 {
43 property item : Item [1];
44 attribute number : GF:: Quantifier [1];
45 }
46 class OperationMapping
47 {
48 property output : Output [1] { composes };
49 property signature : Signature [1] { composes };
50 }
51 class Signature
52 {
53 property parameters : Identifier [*|1] { ordered composes };
54 property name : Identifier [1] { composes };
55 }
56 class InputEventMapping
57 {
58 property input : Input [1] { composes };
59 property name : Identifier [1];
60 }
61 class OutputEventMapping
62 {
63 property name : Identifier [1];
64 property output : Output [1] { composes };
65 }
66 class VariableMapping
67 {
68 property name : Identifier [1];
69 property conditions : Conditions [1] { composes };
70 property update : RWSentence [1] { composes };
71 }
72 abstract class RobotAssumption;
73 class RWDocument
74 {
75 property inputEventMappings : InputEventMapping [*|1] { ordered

↪→ composes };
76 property outputEventMappings : OutputEventMapping [*|1] { ordered
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↪→ composes };
77 property operationMappings : OperationMapping [*|1] { ordered

↪→ composes };
78 property variableMappings : VariableMapping [*|1] { ordered composes

↪→ };
79 property robotAssumptions : RobotAssumption [*|1] { ordered composes

↪→ };
80 property elementAssumptions : ElementAssumption [*|1] { ordered

↪→ composes };
81 property arenaAssumptions : ArenaAssumption [*|1] { ordered composes

↪→ };
82 }
83 class ArenaAssumption
84 {
85 property sentence : RWSentence [1] { composes };
86 }
87 abstract class BasicItem extends Item;
88 class NounBI extends BasicItem
89 {
90 attribute noun : GF::Noun [1];
91 }
92 class Identifier
93 {
94 attribute identifier : String [?];
95 }
96 abstract class CompoundItem extends Item
97 {
98 property item : Item [1];
99 }

100 class AdverbCI extends CompoundItem
101 {
102 attribute adverb : GF:: Adverb [1];
103 }
104 class PrepositionCI extends CompoundItem
105 {
106 property itemphrases : ItemPhrase [+|1] { ordered };
107 attribute preposition : GF:: Preposition [1];
108 attribute conjunctionType : ConjunctionType [1];
109 }
110 abstract class Item extends ItemPhrase;
111 abstract class ElementAssumption;
112 abstract class RWSentence
113 {
114 property itemphrase : ItemPhrase [1];
115 }
116 class RobotSentence extends RobotAssumption
117 {
118 property sentence : RWSentence [1] { composes };
119 }
120 class RobotPModel extends RobotAssumption
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121 {
122 property pmodel : PhysMod :: PModel [1];
123 property instantiations : PhysMod :: Instantiation [*|1] { ordered };
124 }
125 abstract class Input;
126 class InputSometimes extends Input
127 {
128 property conditions : Conditions [1];
129 property sentences : RWSentence [*|1] { ordered !unique };
130 }
131 class Conditions
132 {
133 property sentences : RWSentence [+|1] { ordered };
134 attribute subjunction : GF:: Subjunction [1];
135 }
136 class InputAlways extends Input
137 {
138 property sentences : RWSentence [*|1] { ordered !unique };
139 }
140 class InputNever extends Input;
141 class NoOutput extends Output ,RoboWorldIR :: OutputIR;
142 class OutputSometimes extends Output
143 {
144 property conditions : Conditions [1];
145 property sentences : RWSentence [+|1] { ordered !unique };
146 }
147 abstract class Output;
148 class UnitBI extends BasicItem
149 {
150 attribute unit : Unit [1];
151 }
152 class FloatLiteralIP extends ItemPhrase
153 {
154 attribute value : _'ecore.xml.type'::Float [1];
155 }
156 class OutputAlways extends Output ,RoboWorldIR :: OutputIR
157 {
158 property sentences : RWSentence [+|1] { ordered };
159 }
160 class DiagrammaticOutput extends Output
161 {
162 property opd : RoboChart :: RCOperation [1];
163 property sizetu : RoboChart :: RCIntegerExp [1];
164 property conditions : Conditions [?];
165 attribute timeunit : Unit [1];
166 }
167 class ElementSentence extends ElementAssumption
168 {
169 property sentence : RWSentence [1] { composes };
170 }
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171 class ElementPModel extends ElementAssumption
172 {
173 property pmodel : PhysMod :: PModel [1];
174 property instantiations : PhysMod :: Instantiation [*|1] { ordered };
175 property name : Item [1] { composes };
176 }
177 datatype Unit : 'java.lang.String ' { serializable };
178 enum ConjunctionType { serializable }
179 {
180 literal AND;
181 literal OR = 1;
182 }
183 }





C. Complete RoboWorld IR Metamodel

C.1 RoboWorldIR.ecore

1 import ExpressionIR : 'ExpressionIR.ecore#/';
2 import RoboWorldMM : 'RoboWorldMM.ecore#/';
3 import GF : 'RoboWorldMM.ecore #//GF';
4 import PhysMod : 'RoboWorldMM.ecore #// PhysMod ';
5 import RoboChart : 'RoboWorldMM.ecore #// RoboChart ';
6

7 package RoboWorldIR : RoboWorldIR = 'http ://www.robocalc.circus/
↪→ RoboWorldIR '

8 {
9 class OperationMappingIR

10 {
11 property signature : RoboWorldMM :: Signature [1] { composes };
12 property output : OutputIR [1] { composes };
13 }
14 class InputEventMappingIR
15 {
16 property input : InputIR [1] { composes };
17 property name : RoboWorldMM :: Identifier [1] { composes };
18 }
19 class OutputEventMappingIR
20 {
21 property name : RoboWorldMM :: Identifier [1] { composes };
22 property output : OutputIR [1] { composes };
23 }
24 class RWIntermediateRepresentation
25 {
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26 property inputEventMappings : InputEventMappingIR [*|1] { ordered
↪→ composes };

27 property outputEventMappings : OutputEventMappingIR [*|1] { ordered
↪→ composes };

28 property operationMappings : OperationMappingIR [*|1] { ordered
↪→ composes };

29 property variableMappings : VariableMappingIR [*|1] { ordered
↪→ composes };

30 property arena : Arena [1] { composes };
31 property robot : Element [1] { composes };
32 property elements : Element [*|1] { ordered composes };
33 }
34 class VariableMappingIR
35 {
36 property conditions : ExpressionIR :: Constraint [+|1] { ordered

↪→ composes };
37 property update : Statement [1] { composes };
38 property name : RoboWorldMM :: Identifier [1] { composes };
39 }
40 enum Dimension { serializable }
41 {
42 literal OneD : '1D' = 1;
43 literal TwoD : '2D' = 2;
44 literal ThreeD : '3D' = 3;
45 }
46 class Conditions;
47 abstract class Element
48 {
49 property name : RoboWorldMM :: Identifier [1] { composes };
50 property number : NumericProperty [?] { composes };
51 attribute plurality : Plurality [1];
52 }
53 class ElementPModel extends Element
54 {
55 property pmodel : RoboWorldMM :: PhysMod :: PModel [1] { composes };
56 property instantiations : RoboWorldMM :: PhysMod :: Instantiation [*|1]

↪→ { ordered composes };
57 }
58 class ElementDescription extends Element
59 {
60 property components : ElementDescription [*|1] { ordered composes };
61 property properties : ExpressionIR :: Constraint [*|1] { ordered

↪→ composes };
62 property attributes : Attribute [*|1] { ordered composes };
63 property shape : Shape [?] { composes };
64 }
65 abstract class InputIR;
66 class InputSometimesIR extends InputIR
67 {
68 property conditions : ExpressionIR :: Constraint [+|1] { ordered
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↪→ composes };
69 property communications : Statement [*|1] { ordered composes };
70 }
71 class InputAlwaysIR extends InputIR
72 {
73 property communications : Statement [+|1] { ordered composes };
74 }
75 class InputNeverIR extends InputIR;
76 abstract class OutputIR;
77 class OutputSometimesIR extends OutputIR
78 {
79 property conditions : ExpressionIR :: Constraint [+|1] { ordered

↪→ composes };
80 property statements : Statement [*|1] { ordered composes };
81 attribute subjunction : RoboWorldMM ::GF:: Subjunction [1];
82 }
83 class Region extends ElementDescription
84 {
85 attribute dimension : Dimension [1];
86 attribute closed : Boolean [1] = 'false';
87 }
88 class NumericProperty
89 {
90 property properties : ExpressionIR :: Constraint [+|1] { ordered

↪→ composes };
91 }
92 abstract class Action;
93 class OutputAlwaysIR extends OutputIR
94 {
95 property statements : Statement [+|1] { ordered composes };
96 }
97 class NoOutputIR extends OutputIR;
98 class Attribute
99 {

100 property name : RoboWorldMM :: Identifier [1] { composes };
101 property type : Type [1] { composes };
102 }
103 abstract class Type;
104 class DiagrammaticOutputIR extends OutputIR
105 {
106 property opd : RoboWorldMM :: RoboChart :: RCOperation [1] { composes };
107 property sizetu : RoboWorldMM :: RoboChart :: RCIntegerExp [1] {

↪→ composes };
108 attribute tunit : RoboWorldMM ::Unit [1];
109 property conditions : ExpressionIR :: Constraint [*|1] { ordered

↪→ composes };
110 attribute subjunction : RoboWorldMM ::GF:: Subjunction [?];
111 }
112 abstract class Shape;
113 class Box extends Shape
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114 {
115 property xwidth : NumericProperty [?] { composes };
116 property ywidth : NumericProperty [?] { composes };
117 property zwidth : NumericProperty [?] { composes };
118 }
119 class Sphere extends Shape
120 {
121 property radius : NumericProperty [?] { composes };
122 }
123 class Cylinder extends Shape
124 {
125 property radius : NumericProperty [?] { composes };
126 property depth : NumericProperty [?] { composes };
127 }
128 class Assign extends Action
129 {
130 property assignto : ExpressionIR :: ItemPhraseIR [1] { composes };
131 property value : ExpressionIR :: ItemPhraseIR [1] { composes };
132 }
133 class Put extends Action
134 {
135 property element : ExpressionIR :: ElementReference [1] { composes };
136 property into : ExpressionIR :: ElementReference [1] { composes };
137 }
138 class Take extends Action
139 {
140 property element : ExpressionIR :: ElementReference [1] { composes };
141 property from : ExpressionIR :: ElementReference [1] { composes };
142 }
143 class Communicate extends Action
144 {
145 property value : ExpressionIR :: ItemPhraseIR [1] { composes };
146 }
147 class Statement
148 {
149 property sentence : RWSentence [1] { composes };
150 property action : Action [?] { composes };
151 }
152 class Arena extends Region
153 {
154 attribute hasFloor : Boolean [1];
155 property gradient : NumericProperty [?] { composes };
156 attribute hasRain : Boolean [1];
157 property windSpeed : NumericProperty [?] { composes };
158 }
159 enum Plurality { serializable }
160 {
161 literal SINGULAR : 'SINGULAR ';
162 literal PLURAL = 1;
163 literal UNCOUNTABLE : 'UNCOUNTABLE ' = 2;
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164 }
165 class RWSentence
166 {
167 attribute text : String [?];
168 }
169 datatype _'Sequence ' { serializable };
170 class _'Tuple' extends Type
171 {
172 property types : Type [+|1] { ordered composes };
173 }
174 class _'Real' extends Type;
175 class Enumeration extends Type
176 {
177 property variants : RoboWorldMM :: Identifier [*|1] { ordered composes

↪→ };
178 }
179 }
180

181 package RoboWorldMM : RoboWorldMM = 'http ://www.robocalc.circus/
↪→ RoboWorldMM '

182 {
183 package PhysMod : PhysMod = 'http ://www.robocalc.circus/PhysMod '
184 {
185 class PModel;
186 class Instantiation;
187 }
188 package RoboChart : RoboChart = 'http ://www.robocalc.circus/RoboChart

↪→ '
189 {
190 class RCIntegerExp;
191 class RCOperation;
192 }
193 class Identifier;
194 class Signature;
195 }

C.2 ExpressionIR.ecore

1 import RoboWorldIR : 'RoboWorldIR.ecore#/';
2 import RoboWorldMM : 'RoboWorldMM.ecore#/';
3 import _'ecore.xml.type' : 'http ://www.eclipse.org/emf /2003/ XMLType ';
4 import GF : 'RoboWorldMM.ecore #//GF';
5

6 package ExpressionIR : ExpressionIR = 'http ://www.robocalc.circus/
↪→ ExpressionIR '

7 {
8 abstract class BooleanExpression;
9 abstract class UnaryBooleanExpression extends BooleanExpression

10 {
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11 property pred : BooleanExpression [1] { composes };
12 }
13 abstract class BinaryBooleanExpression extends BooleanExpression
14 {
15 property leftPred : BooleanExpression [1] { composes };
16 property rightPred : BooleanExpression [1] { composes };
17 }
18 class NotExpression extends UnaryBooleanExpression;
19 abstract class QuantifierExpression extends UnaryBooleanExpression
20 {
21 property element : RoboWorldIR :: Element [1];
22 property name : RoboWorldMM :: Identifier [1] { composes };
23 property variable : RoboWorldMM :: Identifier [1] { composes };
24 }
25 class UniversalExpression extends QuantifierExpression;
26 class ExistentialExpression extends QuantifierExpression;
27 class AndExpression extends BinaryBooleanExpression;
28 class OrExpression extends BinaryBooleanExpression;
29 abstract class ComparisonExpression extends BooleanExpression
30 {
31 property left : ItemPhraseIR [1] { composes };
32 property right : ItemPhraseIR [1] { composes };
33 }
34 class LessThan extends ComparisonExpression;
35 class Equal extends ComparisonExpression;
36 class GreaterThan extends ComparisonExpression;
37 abstract class Expression;
38 class Distance extends PrimitiveExpression
39 {
40 property from : ElementReference [1] { composes };
41 property to : ElementReference [1] { composes };
42 }
43 class Towards extends PrimitiveExpression
44 {
45 property towards : ElementReference [1] { composes };
46 property base : ElementReference [1] { composes };
47 }
48 abstract class BinaryExpression extends Expression
49 {
50 property right : Expression [1];
51 property left : Expression [1];
52 }
53 class Multiplication extends BinaryExpression;
54 class Addition extends BinaryExpression;
55 class Negation extends Expression
56 {
57 property expression : Expression [1] { composes };
58 }
59 class NounBIIR extends BasicItemIR
60 {
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61 attribute noun : RoboWorldMM ::GF::Noun [1];
62 }
63 class PrepositionCIIR extends CompoundItemIR
64 {
65 property itemphrases : ItemPhraseIR [+|1] { ordered composes };
66 attribute preposition : RoboWorldMM ::GF:: Preposition [1];
67 attribute conjunctionType : RoboWorldMM :: ConjunctionType [1];
68 }
69 abstract class ItemIR extends ItemPhraseIR;
70 class AdverbCIIR extends CompoundItemIR
71 {
72 attribute adverb : RoboWorldMM ::GF:: Adverb [1];
73 }
74 abstract class CompoundItemIR extends ItemIR
75 {
76 property item : ItemIR [1] { composes };
77 }
78 class QualifiedBIIR extends BasicItemIR
79 {
80 property basicitem : BasicItemIR [1] { composes };
81 attribute adjective : RoboWorldMM ::GF:: Adjective [1];
82 }
83 class QuantifiedIPIR extends ItemPhraseIR
84 {
85 property item : ItemIR [1] { composes };
86 attribute number : RoboWorldMM ::GF:: Quantifier [1];
87 }
88 abstract class ItemPhraseIR
89 {
90 property expression : Expression [?];
91 }
92 abstract class BasicItemIR extends ItemIR;
93 class DeterminedIPIR extends ItemPhraseIR
94 {
95 property item : ItemIR [1] { composes };
96 attribute determiner : RoboWorldMM ::GF:: Determiner [1];
97 }
98 class NumericLiteral extends PrimitiveExpression
99 {

100 attribute value : _'ecore.xml.type':: Double [1];
101 }
102 class EnumLiteral extends PrimitiveExpression
103 {
104 property value : RoboWorldMM :: Identifier [1] { composes };
105 }
106 class TimeSince extends PrimitiveExpression
107 {
108 property event : RoboWorldMM :: Identifier [?];
109 }
110 class Constraint
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111 {
112 property booleanexpression : BooleanExpression [?] { composes };
113 property sentence : RoboWorldIR :: RWSentence [1] { composes };
114 }
115 class PronounIPIR extends ItemPhraseIR
116 {
117 attribute pronoun : RoboWorldMM ::GF:: Pronoun [1];
118 property referent : ItemPhraseIR [?] { composes };
119 }
120 class FloatLiteralIR extends ItemPhraseIR
121 {
122 attribute value : _'ecore.xml.type':: Double [1];
123 }
124 class UnitBIIR extends BasicItemIR
125 {
126 attribute unit : RoboWorldMM ::Unit [1];
127 }
128 abstract class PrimitiveExpression extends Expression;
129 abstract class EntityFieldExpression extends PrimitiveExpression
130 {
131 property elementref : ElementReference [1] { composes };
132 property componentrefs : ElementReference [*|1] { ordered composes

↪→ };
133 }
134 class LessThanOrEqual extends ComparisonExpression;
135 class GreaterThanOrEqual extends ComparisonExpression;
136 class In extends BooleanExpression
137 {
138 property set : ItemPhraseIR [1] { composes };
139 property element : ItemPhraseIR [1] { composes };
140 }
141 class MayExpression extends UnaryBooleanExpression;
142 enum ElementProperty { serializable }
143 {
144 literal XWIDTH : 'XWIDTH ';
145 literal YWIDTH : 'YWIDTH ' = 1;
146 literal ZWIDTH : 'ZWIDTH ' = 2;
147 literal RADIUS = 3;
148 literal DEPTH = 4;
149 literal SIZE = 5;
150 literal XPOSITION : 'XPOSITION ' = 6;
151 literal YPOSITION : 'YPOSITION ' = 7;
152 literal ZPOSITION : 'ZPOSITION ' = 8;
153 literal POSITION = 9;
154 literal YAW = 10;
155 literal PITCH = 11;
156 literal ROLL = 12;
157 literal VELOCITY = 13;
158 literal ACCELERATION = 14;
159 literal ANGULARVELOCITY = 15;
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160 literal YAWVELOCITY = 16;
161 literal PITCHVELOCITY = 17;
162 literal ROLLVELOCITY = 18;
163 literal ANGULARACCELERATION = 19;
164 literal YAWACCELERATION = 20;
165 literal PITCHACCELERATION = 21;
166 literal ROLLACCELERATION = 22;
167 literal POSE = 23;
168 literal ORIENTATION = 24;
169 }
170 abstract class ElementReference
171 {
172 property element : RoboWorldIR :: Element [1];
173 property name : RoboWorldMM :: Identifier [1] { composes };
174 }
175 class UniqueElement extends ElementReference;
176 class SomeElement extends ElementReference
177 {
178 property constraint : Constraint [?] { composes };
179 property variable : RoboWorldMM :: Identifier [1] { composes };
180 }
181 class AllElements extends ElementReference
182 {
183 property constraint : Constraint [?] { composes };
184 property variable : RoboWorldMM :: Identifier [1] { composes };
185 }
186 class PotentialElement extends ElementReference;
187 class QuantifiedElement extends ElementReference
188 {
189 property variable : RoboWorldMM :: Identifier [1] { composes };
190 }
191 class AttributeExpression extends EntityFieldExpression
192 {
193 property attribute : RoboWorldIR :: Attribute [1];
194 property name : RoboWorldMM :: Identifier [1] { composes };
195 }
196 class PropertyExpression extends EntityFieldExpression
197 {
198 attribute property : ElementProperty [1];
199 }
200 class ElementBody extends PrimitiveExpression
201 {
202 property elementref : ElementReference [1] { composes };
203 }
204 class ElementSurface extends PrimitiveExpression
205 {
206 property elementref : ElementReference [1] { composes };
207 }
208 class ArenaGradient extends PrimitiveExpression;
209 class ArenaWindSpeed extends PrimitiveExpression;
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210 class Range extends BinaryExpression;
211 class TupleLiteral extends Expression
212 {
213 property expression : Expression [+|1] { ordered };
214 }
215 class SequenceLiteral extends Expression
216 {
217 property expression : Expression [+|1] { ordered composes };
218 }
219 class Ground extends PrimitiveExpression;
220 class VectorLiteral extends PrimitiveExpression
221 {
222 attribute values : _'ecore.xml.type':: Double [2..*|1] { ordered };
223 }
224 class On extends BooleanExpression
225 {
226 property on : ItemPhraseIR [1] { composes };
227 property object : ItemPhraseIR [1] { composes };
228 }
229 class Subset extends ComparisonExpression;
230 }
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D.1 Types

Position == R×R×R
Velocity == R×R×R
Acceleration == R×R×R
Orientation == R×R×R
AngularVelocity == R×R×R
AngularAcceleration == R×R×R

HomeProperty
xwidth,ywidth,zwidth : R
position : Position
orientation : Orientation
locations : PPosition

locations = boxLocspositionorientationxwidthywidthzwidth

ArenaProperty
xwidth,ywidth,zwidth : R
gradient,windSpeed : R
locations : PPosition
home : HomeProperty

locations = {x : 0 . . xwidth; y : 0 . . ywidth; z : 0 . . zwidth}
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Tank of waterType ::= full | empty

RobotProperty
position : Position
velocity : Velocity
acceleration : Acceleration
orientation : Orientation
angularVelocity : AngularVelocity
angularAcceleration : AngularAcceleration
tank of water : Tank of waterType
searchPattern : seqPosition

BuildingProperty
xwidth,ywidth,zwidth : R
position : Position
orientation : Orientation
locations : PPosition

locations = boxLocspositionorientationxwidthywidthzwidth

StatusType ::= burning | extinguished

FireProperty
xwidth,ywidth,zwidth : R
position : Position
orientation : Orientation
locations : PPosition
status : StatusType

locations = boxLocspositionorientationxwidthywidthzwidth

D.2 Channels

D.2.1 Software channels

InOut ::= in | out
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channelfireDetected : InOut
channelfireLost : InOut
channelcritical : InOut
channelspray : InOut×B
channel landed : InOut
channel takeOffCall
channelgoToBuildingCall
channelsearchFireCall
channelgoHomeCall

D.2.2 Input event triggered channels

channelfireDetectedTriggered : B
channelfireLostTriggered : B
channelcriticalTriggered : B
channel landedTriggered : B

D.2.3 Output clock reset channels

channelsprayHappened
channel takeOffHappened
channelgoToBuildingHappened
channelsearchFireHappened
channelgoHomeHappened

D.2.4 Variable get/set channels

channelgetRobotPosition : Position
channelgetRobotVelocity : Velocity
channelgetRobotAcceleration : Acceleration
channelgetRobotOrientation : Orientation
channelgetRobotAngularVelocity : AngularVelocity
channelgetRobotAngularAcceleration : AngularAcceleration
channelgetRobotTank of water : Tank of waterType
channelgetRobotSearchPattern : seqPosition
channelsetRobotPosition : Position
channelsetRobotVelocity : Velocity
channelsetRobotAcceleration : Acceleration
channelsetRobotOrientation : Orientation
channelsetRobotAngularVelocity : AngularVelocity
channelsetRobotAngularAcceleration : AngularAcceleration
channelsetRobotTank of water : Tank of waterType
channelsetRobotSearchPattern : seqPosition
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channelgetBuildingPosition : Position
channelgetBuildingOrientation : Orientation
channelsetBuildingPosition : Position
channelsetBuildingOrientation : Orientation

channelgetNumFires : N
channelgetFirePosition : N×Position
channelgetFireOrientation : N×Orientation
channelgetFireStatus : N×StatusType
channelsetFirePosition : N×Position
channelsetFireOrientation : N×Orientation
channelsetFireStatus : N×StatusType

channelproceed

D.3 Global Constants

arena : ArenaProperty
robotInit : RobotProperty
building : BuildingProperty
potentialFires : PFireProperty

groundLocations : P(R×R×R)

groundLocations = {x,y,z : R | (x,y,z) ∈ arena.locations ∧ z = 0}

arena.xwidth = 50.0
arena.ywidth = 60.0
arena.zwidth≥ building.zwidth+1.0
arena.gradient = 0.0
arena.windSpeed < 8.0

arena.home.xwidth = 1.0
arena.home.ywidth = 1.0
locsOnLocsarena.home.locationsgroundLocations = True
arena.home.locations⊆ arena.locations

robotInit.position ∈ arena.home.locations
robotInit.position ∈ arena.locations
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¬ (building.xwidth < 10.0)
¬ (building.xwidth > 30.0)
¬ (building.ywidth < 10.0)
¬ (building.ywidth > 40.0)
¬ (building.zwidth < 6.0)
¬ (building.zwidth > 20.0)
building.locations⊆ arena.locations

∀fire : potentialFires • fire.xwidth = 0.036
∀fire : potentialFires • fire.ywidth = 0.0
∀fire : potentialFires • fire.zwidth = 0.060
∀fire : potentialFires •

locsOnLocsfire.locationsgroundLocations = True
∨ (locsOnLocsfire.locationsbuilding.locations = True

∧ fire.position.3 ∈ 5.0 . .18.0)
∀fire : potentialFires • fire.locations⊆ arena.locations

D.4 Environment

timeStep : R

processEnvironment =̂ begin

D.4.1 Environment State
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EventTimes
fireDetectedTime : R
fireDetectedOccurred : B
fireLostTime : R
fireLostOccurred : B
criticalTime : R
criticalOccurred : B
landedTime : R
landedOccurred : B

sprayTime : R
sprayOccurred : B
takeOffTime : R
takeOffOccurred : B
goToBuildingTime : R
goToBuildingOccurred : B
searchFireTime : R
searchFireOccurred : B
goHomeTime : R
goHomeOccurred : B

EventTimesInit
EventTimes ′

fireDetectedTime′ = 0.0
fireDetectedOccurred′ = False
fireLostTime′ = 0.0
fireLostOccurred′ = False
criticalTime′ = 0.0
criticalOccurred′ = False
landedTime′ = 0.0
landedOccurred′ = False

sprayTime′ = 0.0
sprayOccurred′ = False
takeOffTime′ = 0.0
takeOffOccurred′ = False
goToBuildingTime′ = 0.0
goToBuildingOccurred′ = False
searchFireTime′ = 0.0
searchFireOccurred′ = False
goHomeTime′ = 0.0
goHomeOccurred′ = False
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EnvironmentState
visible robot : RobotProperty
visible fires : seqFireProperty
time : R
stepTimer : R
EventTimes

stateEnvironmentState

EnvironmentStateInit
EnvironmentState ′

robot′ = robotInit
ranfires′ ⊆ potentialFires
time′ = 0.0
stepTimer′ = 0.0
EventTimesInit

D.4.2 Robot Movement

RobotMovement
ΛEnvironmentState

drobot.position
dt = robot.velocity

drobot.velocity
dt = robot.acceleration

drobot.acceleration
dt = 0

drobot.orientation
dt = robot.angularVelocity

drobot.angularVelocity
dt = robot.angularAcceleration

drobot.angularAcceleration
dt = 0

dtime
dt = 1

dstepTimer
dt = 1

RobotMovementAction =̂ (RobotMovement)

4



(robot.position ∈ groundLocations ∧ robot.velocity.3 < 0)
∨ (robot.position ∈ building.locations

∧ (robot.velocity · (building.position− robot.position)> 0))
∨ (∃fire : ranfires •

robot.position ∈ fire.locations
∧ (robot.velocity · (fire.position− robot.position)> 0))

∨ (time≥ timeStep)


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D.4.3 Collision Detection

CollisionDetection =̂

RobotGroundCollision
@
RobotBuildingCollision
@
RobotFireCollision

StopRobot
∆EnvironmentState

robot′.velocity = (0,0,0)
robot′.acceleration = (0,0,0)

robot′.position = robot.position
robot′.orientation = robot.orientation
robot′.angularVelocity = robot.angularVelocity
robot′.angularAcceleration = robot.angularAcceleration
robot′.tank of water = robot.tank of water
robot′.searchPattern = robot.searchPattern

fires′ = fires
time′ = time
ΞEventTimes

RobotGroundCollision =̂

(robot.position.3 = 0 ∧ robot.velocity.3 < 0)N

(StopRobot)

RobotBuildingCollision =̂

(robot.position ∈ building.locations ∧ (robot.velocity · (building.position− robot.position)> 0))N

(StopRobot)

RobotFireCollision =̂

(∃fire : ranfires •
robot.position ∈ fire.locations ∧ (robot.velocity · (fire.position− robot.position)> 0))N

(StopRobot)

D.4.4 Communication Actions that occur on the time step

InputTriggers =̂ fireDetected InputEventMapping;
fireLost InputEventMapping;
critical InputEventMapping;
landed InputEventMapping
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fireDetected InputEventMapping =̂

if(∃fire1 : ranfires • ¬ (norm(fire1.position− robot.position)> 0.5))−→
fireDetectedTriggered!True
−→fireDetectedOccurred,fireDetectedTime := True, time

8¬ (∃fire1 : ranfires • ¬ (norm(fire1.position− robot.position)> 0.5))−→
fireDetectedTriggered!False−→Skip fi

fireLost InputEventMapping =̂

if(∃fire1 : ranfires • norm(fire1.position− robot.position)> 0.5)−→
fireLostTriggered!True
−→fireLostOccurred,fireLostTime := True, time

8¬ (∃fire1 : ranfires • norm(fire1.position− robot.position)> 0.5)−→
fireLostTriggered!False−→Skip fi

critical InputEventMapping =̂

if(sprayOccurred = True ∧ sprayTime≥ 180.0)
∨ (takeOffOccurred = True ∧ takeOffTime≥ 1200.0)−→

criticalTriggered!True
−→ criticalOccurred,criticalTime := True, time

8¬ ((sprayOccurred = True ∧ sprayTime≥ 180.0)
∨ (takeOffOccurred = True ∧ takeOffTime≥ 1200.0))−→

criticalTriggered!False−→Skip fi

landed InputEventMapping =̂

if(robot.position.3 = 0.0)−→
landedTriggered!True
−→ landedOccurred, landedTime := True, time

8¬ (robot.position.3 = 0.0)−→
landedTriggered!False−→Skip fi

Communication =̂ Skip

D.4.5 Input Event Buffers

InputEventBuffers =̂ fireDetected Buffer 9fireLost Buffer
9 critical Buffer 9 landed Buffer
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fireDetected Buffer =̂ varfireDetectedTrig : B • fireDetectedTrig := False; fireDetectedTriggered?b−→fireDetectedTrig := b
@
(fireDetectedTrig = True)NfireDetected.in−→Skip

 ; fireDetected Buffer

fireLost Buffer =̂ varfireLostTrig : B • fireLostTrig := False; fireLostTriggered?b−→fireLostTrig := b
@
(fireLostTrig = True)NfireLost.in−→Skip

 ; fireLost Buffer

critical Buffer =̂ varcriticalTrig : B • criticalTrig := False; criticalTriggered?b−→ criticalTrig := b
@
(criticalTrig = True)N critical.in−→Skip

 ; critical Buffer

landed Buffer =̂ var landedTrig : B • landedTrig := False; landedTriggered?b−→ landedTrig := b
@
(landedTrig = True)N landed.in−→Skip

 ; landed Buffer

D.4.6 Output Event Buffers

OutputEventBuffers =̂ spray Buffer 9 takeOff Buffer 9goToBuilding Buffer
9 searchFire Buffer 9goHome Buffer

spray Buffer =̂ sprayHappened
−→ sprayOccurred,sprayTime := True, time;
spray Buffer

takeOff Buffer =̂ takeOffHappened
−→ takeOffOccurred, takeOffTime := True, time;
takeOff Buffer

goToBuilding Buffer =̂ goToBuildingHappened
−→goToBuildingOccurred,goToBuildingTime := True, time;
goToBuilding Buffer
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searchFire Buffer =̂ searchFireHappened
−→ searchFireOccurred,searchFireTime := True, time;
searchFire Buffer

goHome Buffer =̂ goHomeHappened
−→goHomeOccurred,goHomeTime := True, time;
goHome Buffer

D.4.7 Environment main action

EnvironmentLoop =̂ ( EnvironmentStateInit) ; µX •
RobotMovementAction; (time < timeStep)NCollisionDetection

@
(time≥ timeStep)N InputTriggers ; Communication40 time := 0

 ; X

channelset triggerChannels ==

{|fireDetectedTriggered,fireLostTriggered,criticalTriggered, landedTriggered |}

namesetEnvVars == {robot,building,fires, time,sprayTime, takeOffTime}

• (EnvironmentLoop JEnvVars | triggerChannels |∅ K InputEventBuffers)
\triggerChannels

end

D.5 Mapping

channel tock

channelgetRobot : RobotProperty
channelsetRobot : RobotProperty
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PackRobotProperty
robotPos? : Position; robotVel? : Velocity; robotAcc? : Acceleration
robotOri? : Orientation; robotAngVel? : AngularVelocity
robotAngAcc? : AngularAcceleration
robotTank of water? : Tank of waterType
robotSearchPattern? : seqPosition
robotProperty! : RobotProperty

robotProperty!.position = robotPos?
robotProperty!.velocity = robotVel?
robotProperty!.acceleration = robotAcc?
robotProperty!.orientation = robotOri?
robotProperty!.angularVelocity = robotAngVel?
robotProperty!.angularAcceleration = robotAngAcc?
robotProperty!.tank of water = robotTank of water?
robotProperty!.searchPattern = robotSearchPattern?

UnpackRobotProperty
robotProperty? : RobotProperty
robotPos! : Position; robotVel! : Velocity; robotAcc! : Acceleration
robotOri! : Orientation; robotAngVel! : AngularVelocity
robotAngAcc! : AngularAcceleration
robotTank of water! : Tank of waterType
robotSearchPattern! : seqPosition

robotPos! = robotProperty?.position
robotVel! = robotProperty?.velocity
robotAcc! = robotProperty?.acceleration
robotOri! = robotProperty?.orientation
robotAngVel! = robotProperty?.angularVelocity
robotAngAcc! = robotProperty?.angularAcceleration
robotTank of water! = robotProperty?.tank of water
robotSearchPattern! = robotProperty?.searchPattern

D.5.1 spray Output Event Mapping

processspray OutputEventMapping =̂ begin

spraymappingDiagram =̂ · · ·

spray Conditions =̂ varrobotTank of water : Tank of waterType •
µX •
getRobotTank of water?x : (x 6= robotTank of water)

−→ robotTank of water := x ; X
@
spray?b−→X
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spray Semantics =̂



 (spraymappingDiagram J∅ | {|spray |} |∅ K spray Conditions)
J∅ | {| tock |} |∅ K
ConvertTocks

\{| tock |}

J∅ | {|getRobot,setRobot |} |∅ K
ConvertRobotChannels


\{|getRobot,setRobot |} ; spray Semantics


@
proceed−→ spray Semantics

ConvertTocks =̂ tock−→
(varproceedCount : N • proceedCount := 0 ; µX •

ifproceedCount < 1.0/timeStep−→proceed−→X
8proceedCount ≥ 1.0/timeStep−→ConvertTocks
fi)
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ConvertRobotChannels =̂ varrobotPos : Position; robotVel : Velocity;
robotAcc : Acceleration •

varrobotOri : Orientation; robotAngVel : AngularVelocity;
robotAngAcc : AngularAcceleration •

varrobotTank of water : Tank of waterType •
varrobotSearchPattern : seqPosition •
µX •

getRobotPosition?x : (x 6= robotPos)−→ robotPos := x ; X
@
getRobotVelocity?x : (x 6= robotVel)−→ robotVel := x ; X
@
getRobotAcceleration?x : (x 6= robotAcc)−→ robotAcc := x ; X
@
getRobotOrientation?x : (x 6= robotOri)−→ robotOri := x ; X
@
getRobotAngularVelocity?x : (x 6= robotAngVel)−→ robotAngVel := x ; X
@
getRobotAngularAcceleration?x : (x 6= robotAngAcc)−→ robotAngAcc := x ; X
@
getRobotTank of water?x : (x 6= robotTank of water)−→ robotTank of water := x ; X
@
getRobotSearchPattern?x : (x 6= robotSearchPattern)−→ robotSearchPattern := x ; X
@

(varrobotProperty : RobotProperty • (PackRobotProperty);
getRobot!robotProperty−→Skip) ; X

@

setRobot?robotProperty−→(UnpackRobotProperty);
setRobotPosition!robotPos−→
setRobotVelocity!robotVel−→
setRobotAcceleration!robotAcc−→
setRobotOrientation!robotOri−→
setRobotAngularVelocity!robotAngVel−→
setRobotAngularAcceleration!robotAngAcc−→
setRobotTank of water!robotTank of water−→
setRobotSearchPattern!robotSearchPattern−→X

spray Monitor =̂ spray?b−→ sprayHappened−→Skip

• spray Semantics J∅ | {|spray |} |∅ K spray Monitor

end

D.5.2 takeoff Operation Mapping

process takeOff OperationMapping =̂ begin

takeOff Semantics =̂ µX • takeOffCall−→ setRobotVelocity!(0,0,1.0)−→X



D.5 Mapping 153

takeOff Monitor =̂ µX • takeOffCall−→ takeOffHappened−→X

• takeOff Semantics J∅ | {| takeOffCall |} |∅ K takeOff Monitor

end

D.5.3 goToBuilding Operation Mapping

processgoToBuilding OperationMapping =̂ begin

goToBuilding Semantics =̂ goToBuildingCall
−→getRobotPosition?robotPos−→getBuildingPosition?buildingPos
−→ (setRobotVelocity!(1.0∗ ((buildingPos− robotPos)/norm(buildingPos− robotPos)))

−→Skip);
proceed−→goToBuilding Semantics

goToBuilding Monitor =̂ goToBuildingCall−→goToBuildingHappened−→goToBuilding Monitor

• goToBuilding Semantics J∅ | {|goToBuildingCall |} |∅ KgoToBuilding Monitor

end

D.5.4 goHome Operation Mapping

processgoHome OperationMapping =̂ begin

goHome Semantics =̂ goHomeCall
−→getRobotPosition?robotPos
−→ (setRobotVelocity!(1.0∗ ((arena.home.position− robotPos)/norm(arena.home.position− robotPos)))

−→Skip);
proceed−→goHome Semantics

goHome Monitor =̂ goHomeCall−→goHomeHappened−→goHome Monitor

• goHome Semantics J∅ | {|goHomeCall |} |∅ KgoHome Monitor

end

D.5.5 searchFire Operation Mapping

processsearchFire OperationMapping =̂ begin

searchFireDiagram =̂ · · ·
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searchFire Semantics =̂



 searchFireDiagram
J∅ | {| tock |} |∅ K
ConvertTocks

\{| tock |}

J∅ | {|getRobot,setRobot |} |∅ K
ConvertRobotChannels


\{|getRobot,setRobot |} ; searchFire Semantics


@
proceed−→ searchFire Semantics

ConvertTocks =̂ tock−→
(varproceedCount : N • proceedCount := 0 ; µX •

ifproceedCount < 1.0/timeStep−→proceed−→X
8proceedCount ≥ 1.0/timeStep−→ConvertTocks
fi)
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ConvertRobotChannels =̂ varrobotPos : Position; robotVel : Velocity;
robotAcc : Acceleration •

varrobotOri : Orientation; robotAngVel : AngularVelocity;
robotAngAcc : AngularAcceleration •

varrobotTank of water : Tank of waterType •
varrobotSearchPattern : seqPosition •
µX •

getRobotPosition?x : (x 6= robotPos)−→ robotPos := x ; X
@
getRobotVelocity?x : (x 6= robotVel)−→ robotVel := x ; X
@
getRobotAcceleration?x : (x 6= robotAcc)−→ robotAcc := x ; X
@
getRobotOrientation?x : (x 6= robotOri)−→ robotOri := x ; X
@
getRobotAngularVelocity?x : (x 6= robotAngVel)−→ robotAngVel := x ; X
@
getRobotAngularAcceleration?x : (x 6= robotAngAcc)−→ robotAngAcc := x ; X
@
getRobotTank of water?x : (x 6= robotTank of water)−→ robotTank of water := x ; X
@
getRobotSearchPattern?x : (x 6= robotSearchPattern)−→ robotSearchPattern := x ; X
@

(varrobotProperty : RobotProperty • (PackRobotProperty);
getRobot!robotProperty−→Skip) ; X

@

setRobot?robotProperty−→(UnpackRobotProperty);
setRobotPosition!robotPos−→
setRobotVelocity!robotVel−→
setRobotAcceleration!robotAcc−→
setRobotOrientation!robotOri−→
setRobotAngularVelocity!robotAngVel−→
setRobotAngularAcceleration!robotAngAcc−→
setRobotTank of water!robotTank of water−→
setRobotSearchPattern!robotSearchPattern−→X

searchFire Monitor =̂ searchFireCall−→ searchFireHappened−→Skip

• searchFire Semantics J∅ | {|searchFireCall |} |∅ K searchFire Monitor

end

processMapping =̂ spray OutputEventMapping9goToBuilding OperationMapping
9 takeOff OperationMapping9goHome OperationMapping
9 searchFire OperationMapping
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D.6 Composition

channelsetgetSetChannels == {|getRobotPosition,getRobotVelocity,getRobotAcceleration,getRobotOrientation,getRobotAngularVelocity,getRobotAngularAcceleration,getRobotTank of water,
setRobotPosition,setRobotVelocity,setRobotAcceleration,setRobotOrientation,setRobotAngularVelocity,setRobotAngularAcceleration,setRobotTank of water,
getBuildingPosition,getBuildingOrientation,setBuildingPosition,setBuildingOrientation,
getNumFires,getFirePosition,getFireOrientation,getFireStatus,
setFirePosition,setFireOrientation,setFireStatus |}

channelseteventHappenedChannels == {|sprayHappened, takeOffHappened,
goToBuildingHappened,searchFireHappened,goHomeHappened |}

processRoboWorldDocument =̂
(Environment JgetSetChannels∪ eventHappenedChannels KMapping)
\getSetChannels∪ eventHappenedChannels
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