
RoboChart and RoboTool
Modelling, Verification and Simulation for Robotics

Alvaro Miyazawa Pedro Ribeiro

Ana Cavalcanti



WWW.CS.YORK.AC.UK/CIRCUS/ROBOCALC

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain a
copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required
by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

http://creativecommons.org/licenses/by-nc/3.0


Contents

I Tutorial

1 RoboTool Instalation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Requirements 7

1.2 Download and Update Site 7

1.3 Installation 8

1.4 Creating a new RoboChart Project 11

1.5 Creating a new RoboChart diagram 13

1.6 Exercises 15

2 RoboChart Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.1 Creating Interfaces 17

2.2 Creating Robotic Platforms 19

2.3 Creating Controllers 22

2.4 Creating State Machines 23

2.5 Creating Modules 30

2.6 Exercises 33

3 Analysing RoboChart Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1 Checking core assertions 35

3.2 Using RoboTool’s Assertion DSL 41

3.3 Exercises 44



II Appendices

A RoboChart Project Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

A.1 Exporting a RoboChart project 47
A.2 Importing a RoboChart project 49
A.3 Deleting a RoboChart package 51
A.4 Editing a RoboChart diagram 51
A.5 Deleting element from diagrams 52
A.6 Exporting diagrams as figures 52
A.7 Adapting the generated semantics 53

B RoboChart Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B.1 Transition labels 55
B.2 Types 56
B.3 Expressions 56
B.4 Actions and statements 60

C Assertion DSL Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



I
1 RoboTool Instalation . . . . . . . . . . . . . . . . . . 7
1.1 Requirements
1.2 Download and Update Site
1.3 Installation
1.4 Creating a new RoboChart Project
1.5 Creating a new RoboChart diagram
1.6 Exercises

2 RoboChart Modelling . . . . . . . . . . . . . . . . 17
2.1 Creating Interfaces
2.2 Creating Robotic Platforms
2.3 Creating Controllers
2.4 Creating State Machines
2.5 Creating Modules
2.6 Exercises

3 Analysing RoboChart Models . . . . . . . . 35
3.1 Checking core assertions
3.2 Using RoboTool’s Assertion DSL
3.3 Exercises

Tutorial





1. RoboTool Instalation

This section contain the instruction to download and install RoboTool.

1.1 Requirements

RoboTool (v.2.0.0) is a collection of Eclipse plugins. Its requirements for installations are:

1. Operating System: Linux, Windows or macOS1;
2. Java 11 or above;
3. Eclipse 2021-06 IDE; and
4. FDR4 refinement checker (Optional).

1.2 Download and Update Site

If you are already an Eclipse user, you can install RoboTool from its update site located in
https://www.cs.york.ac.uk/robostar/robotool/update/. Detailed instructions for instal-
lation from the update site are given in the next section.

1While the RoboTool works on all these operating systems, it is only actively developed for Linux. Furthermore,
models created in one operating system may lose formatting when open on different operating systems.

https://www.eclipse.org/
https://www.cs.ox.ac.uk/projects/fdr/
https://www.cs.york.ac.uk/robostar/robotool/update/


8 Chapter 1. RoboTool Instalation

1.3 Installation

If you wish to install RoboTool from the update site, follow the steps below.

1. In order to install RoboTool, first download and install eclipse. We recommend starting with
the package Eclipse IDE for Java Developers.

2. Start eclipse, and select the menu item [Help > Install New Software...].



1.3 Installation 9

3. Enter the RoboTool update site https://www.cs.york.ac.uk/robostar/robotool/
update/ in the field Work with, wait for the available features to load, select the fea-
ture you require, and click Next. For the purposes of this tutorial, we recommend the
following features:

(a) RoboChart Assertions
(b) RoboChart Graphical Editor
(c) RoboChart Metamodel
(d) RoboChart Textual Editor
(e) RoboChart CSP Generator

4. Eclipse will present the list of dependencies that will also be installed. Click Next.

https://www.cs.york.ac.uk/robostar/robotool/update/
https://www.cs.york.ac.uk/robostar/robotool/update/


10 Chapter 1. RoboTool Instalation

5. Accept all licenses, and click Finish.

6. Wait for Eclipse to finish downloading all plugins.

7. Eclipse will show a security warning indicating that the software is unsigned. Click Install
anyway.



1.4 Creating a new RoboChart Project 11

8. If prompted, select all certificates as trusted, and click OK.

9. Finally, restart Eclipse.

1.4 Creating a new RoboChart Project

1. Click on the menu item [File > New > Other...].



12 Chapter 1. RoboTool Instalation

2. Select the wizard New RoboChart Project, and click Next.

3. Give the project a name, optionally change the default location, and click Finish.

The first time a project is created, Eclipse will switch to the RoboChart perspective indicated by
the RoboTool icon on the top-right corner of the window. This perspective is based on the modelling
perspective and organises the Eclipse window to include the properties tab at the bottom, the project
explorer at the top-left and the outline at the bottom-left corner. Additionally, it adds shortcuts to
new RoboChart project and RoboChart package directly on the File > New menu item.



1.5 Creating a new RoboChart diagram 13

1.5 Creating a new RoboChart diagram
1. Right click on the project, and click on the item [New > Other...].

2. Select the wizard New RoboChart Package, and click Next.

3. Select a file name and make sure a container (e.g. your project) is selected. Click Finish.



14 Chapter 1. RoboTool Instalation

4. The editor will open the newly created diagram.

5. (Optional) The palette at the right does not show all diagram edition tools, and you must
expand and contract the sections as necessary. It is possible to configure the palette to show
only icons. Right click on the palette, and select [Layout > Icons Only].



1.6 Exercises 15

6. (Optional) With the icons Only layout selected, the palette can show all the edition tools.
To find out the name of the tool, you can hover you mouse over the icons for a few seconds.

1.6 Exercises
Exercise 1.1 Download Eclipse and install RoboTool.
Exercise 1.2 Switch to the modelling perspective.
Exercise 1.3 Create a new RoboChart project and an empty RoboChart package.





2. RoboChart Modelling

This chapter includes step-by-step instruction to build a simple RoboChart model.

2.1 Creating Interfaces

Interfaces in RoboChart can contain events, variables and operations. Below are the steps used to
create two interfaces, the first containing an operation move, and the second containing an event.

1. Select the interface tool in the Architectural Constructs section of the palette, and click
on the editor to position the interface.



18 Chapter 2. RoboChart Modelling

2. With the interface selected, press F2 to rename the interface.

3. Add an operation by selecting the operation signature tool in the Data Model section, and
clicking on the interface.

4. RoboTool will open a dialog window to input the operation signature. Type the operation
signature1 and click OK to add the operation to the interface.

1Syntax errors are listed in the dialog box.



2.2 Creating Robotic Platforms 19

5. Add another interface called SensorsI and add an event to it by selecting the event tool
in the Data Model section, and clicking on the interface. A similar dialog as in Step 4 will
open. Input the event definition and click OK.

6. The final model with two interfaces MovementI and SensorsI should be as follows.

2.2 Creating Robotic Platforms

A robotic platform represents an abstraction of the robot in terms of the variables, events and
operations available to the software. These elements can either be added directly to the robotic
platform, or they can be indirectly added by providing , requiring or defining interfaces.

Required and provided interfaces represent dependencies between platforms, controllers and
state machines, and can contain only variables and operations, which can be shared between
components. Events are locally defined and are connected explicitly. Defined interfaces simply
define its variables and events on platforms (controllers and state machines) as if they were declared
individually. Defined interfaces cannot contain operations.

The steps to create a robotic platform using the interfaces defined in the previous section are
shown next.



20 Chapter 2. RoboChart Modelling

1. Select the robotic platform tool in the Architectural Constructs section of the palette, and
click on the editor to position the platform.

2. With the platform selected, press F2 to rename the robotic platform.



2.2 Creating Robotic Platforms 21

3. Select the provided interface tool (required or defined ) in the Data Model section of
the palette, and click on the platform. Input the name of an interface and click OK.

4. The result of providing the MovementI interface, and defining the SensorsI interface is
shown below.

Additionally, events, variables and operations can be added to platforms in an identical fashion as
for interfaces.



22 Chapter 2. RoboChart Modelling

2.3 Creating Controllers

A controller describes possibly parallel behaviours, containing one or more state machines.

1. Select the controller tool in the Architectural Constructs section of the palette, and click
on the editor to position the controller.

2. After clicking, you can drag the mouse pointer to size the controller box. The resulting
diagram is shown below.



2.4 Creating State Machines 23

3. Use the required and defined interface tool to provide MovementI and define SensorsI.

2.4 Creating State Machines

In this section, we will create a simple state machine with two states Moving and Turning inside
the controller created in the previous section.

1. Select the state machine tool in the Architectural Constructs section of the palette, and
click inside the controller to position the state machine.



24 Chapter 2. RoboChart Modelling

2. Rename it and add the required and defined interfaces as in the previous section.

3. In order to connect the events of the controller and state machine, select the connection tool
in the Architectural Constructs section.



2.4 Creating State Machines 25

4. Start the connection by first clicking on the event of the controller.

5. Complete the connection by clicking on the event of the state machine.



26 Chapter 2. RoboChart Modelling

6. Next, add an initial junction to the state machine using the initial junction tool in the State
Machine section of the palette. Click inside the state machine to position the initial junction.

7. Select the state tool in the State Machine section of the palette, and click inside the state
machine to position state. Press F2 to rename the state.



2.4 Creating State Machines 27

8. Use the transition tool in the State Machine section of the palette, and click on the initial
junction to start connecting the transition.

9. Next, click on the state to complete the transition.



28 Chapter 2. RoboChart Modelling

10. Add an entry action to the state Moving using the action tool in the State Machine section
of the palette.

11. RoboTool will open a dialog window to input the action. A syntax hint is provided on the
title of the dialog window, and syntax errors are shown below the text field. Add the entry
action entry move(10,0) and click OK.



2.4 Creating State Machines 29

12. Add a second state Turning and a transition from Moving to Turning. Double click the
transition to open a dialog windows to edit the transition label.

13. The dialog box provides a description of the syntax of labels and also any syntax errors.
Define the trigger of the transition as the event obstacle and click OK.



30 Chapter 2. RoboChart Modelling

14. Finally, add a transition from Turning to Moving. Add a label to the transition specifying
its condition as [sinceEntry(Turning)>=180/30], which enables the transition as soon
as 6 time units have elapsed since entering the state Turning.

2.5 Creating Modules

Modules are the top level constructs of RoboChart, and they associate one or more controllers with
exactly one robotic platform. Below are the steps to create a module.

1. Select the module tool in the Architectural Constructs section of the palette.



2.5 Creating Modules 31

2. Click on a new created diagram, and press F2 to rename the module2.

3. Select the robotic platform reference tool (blue icon) in the Architectural Constructs section
of the palette, and click on the module.

4. RoboTool will open a dialog window to input the name of a robotic platform. Input the name
of the platform created in Section 2.2 and click OK.

2The errors shown in the problems tab at the bottom of the window occur because a module must have one robotic
platform and at least one controller. These errors are resolved in the remaining steps.



32 Chapter 2. RoboChart Modelling

5. The resulting module shows the reference with a gray background and blue icon.

6. Select the controller reference tool in the Architectural Constructs section of the palette.



2.6 Exercises 33

7. Click on the module, input the name of the controller created in Section 2.3 in the dialog
box, and click OK.

8. Finally, use the connection tool in the Architectural Constructs section of the palette to
connect the obstacle event of the robotic platform to the obstacle event of the controller.

2.6 Exercises
Exercise 2.1 The alpha algorithm is a simple aggregation algorithm in swarm robotics [2].

A simulation of this algorithm can be found in www.youtube.com/watch?v=8A7454VVhys.

The basic algorithm is very simple:
• The default behaviour of a robot is forward motion.
• While moving each robot periodically sends an “Are you there?” message. It will receive

“Yes, I am here” messages only from those robots that are in range, namely its neighbours.
• If the number of a robot’s neighbours should fall below the threshold α then it assumes it

is moving out of the swarm and will execute a 180◦ turn.

www.youtube.com/watch?v=8A7454VVhys


34 Chapter 2. RoboChart Modelling

• When the number of neighbours rises above α (when the swarm is regained) the robot
then executes a random turn. This is to avoid the swarm simply collapsing in on itself.

Complete the following tasks to model a robot that implements the alpha algorithm:
a) Define the robotic platform. Suggestion: the fewer requirements on the platform, the

more actual platforms can be used to implement the system.
b) Define the module: controller(s) and connections to platform. Suggestion: create

separate controllers for separate requirements.
c) Define a state machine to model movement control.
d) Define a state machine to model neighbour detection.

�

Exercise 2.2 In this exercise, you will model the control software of a simple robot that by
itself cannot push an object, but when combined in a swarm can achieve the desired goal of
transporting a larger object.

A group of robots transporting an object (blue box) towards a goal (red cylinder) [4].

An informal state machine account of the solution [4].

Construct a RoboChart model that implements the transporter robot:
a) Define the robotic platform based on the events, variables, clocks and operations used in

the state machine.
b) Rewrite the state machine above in RoboChart.
c) Define the module: controller(s) and connections to platform.

�



3. Analysing RoboChart Models

The semantics of RoboChart is formalised in CSP, and RoboTool generates the semantics of well-
formed model in the csp-gen folder. You can use the refinement checker FDR[7] to analyse your
RoboChart models.

Section 3.1 illustrates the use of automatically generated assertions to check standard properties
such as deadlock freedom and determinism, and Section 3.2 illustrates the use of a simple assertions
DSL to specify custom properties.

3.1 Checking core assertions

Along with the CSP semantics of a model, RoboTool automatically generates assertions to check
standard properties such as deadlock freedom and determinism. These properties are specified in a
file with the suffix _coreassertions.csp, and can be checked by FDR.1

1We recommend cleaning the project at least once using the menu item Project > Clean.... This is to avoid
potentially outdated generated components.



36 Chapter 3. Analysing RoboChart Models

1. The core assertions for the controller created in the previous chapter are contained in the file
file_mycontroller_coreassertions.csp in the csp-gen folder.

2. (Optional) In order to open the file in FDR directly from eclipse, select FDR as the default
editor. Right-click the file, and select [Open With > Other...].



3.1 Checking core assertions 37

3. In the Editor Selection dialog, select External programs.

4. Check both “Use this editor for all FILENAME files” and “Use it for all ‘*.csp’ files”.



38 Chapter 3. Analysing RoboChart Models

5. Click Browse... to select FDR as the editor.

6. Find the FDR4 executable, and click OK.



3.1 Checking core assertions 39

7. Make sure FDR4 is selected in the Editor Selection dialog, and click OK.

8. The last step opens the FDR4 windows with all assertions loaded and displayed on the
right-hand side panel.



40 Chapter 3. Analysing RoboChart Models

9. Click the Run All button at the top-right corner, and wait for the checks to finish. Alterna-
tively, click each Check button to run each assertion separately.

10. If any of the (positive) assertions fail, a counter example is produced. It can be viewed by
clicking the Debug button of the assertion.



3.2 Using RoboTool’s Assertion DSL 41

3.2 Using RoboTool’s Assertion DSL
RoboTool also provides a simple text editor for an assertion DSL, which includes syntax high-
lighting, auto-completion, and error feedback. The DSL helps you write simple assertions such as
deadlock freedom and refinement without requiring knowledge of the naming conventions of our
semantics. More complex properties can be specified in CSP within special environments, but this
requires an understanding of the structure and naming conventions of the RoboChart semantics.

1. Create a new file by right-clicking the project, and selecting [New > File].

2. Name the file with the .assertions extension, and click OK.



42 Chapter 3. Analysing RoboChart Models

3. (Optional) If RoboTool has not yet been configure to find the FDR executable, select the
menu item [Window > Preferences].

4. (Optional) Select the RoboChart > Analysis item, and click Browse... to select the path
to the installation directory of FDR.

5. (Optional) Click Apply and Close to apply the configuration.



3.2 Using RoboTool’s Assertion DSL 43

6. In the .assertions file, right your custom assertions. Notice that it may be necessary to use
the qualified name of RoboChart elements, such as, MyController::MyStateMachine.



44 Chapter 3. Analysing RoboChart Models

7. In order to verify the assertions, right-click the .assertions file, and select the [RoboTool
> CSP > Run...] item.

8. Provided there are no errors in the assertions or models, FDR checks the assertions in
the background, and RoboTool summarises the result in the form of a report, which is
automatically opened upon completion of the checks.

3.3 Exercises
Exercise 3.1 Check the core assertions for the model created in exercise 2.1.
Exercise 3.2 Write custom assertions for the model created in exercise 2.1, and check them using
RoboTool and FDR.
Exercise 3.3 Check the core assertions for the model created in exercise 2.2.
Exercise 3.4 Write custom assertions for the model created in exercise 2.2, and check them using
RoboTool and FDR.



II

A RoboChart Project Management . . . . . 47
A.1 Exporting a RoboChart project
A.2 Importing a RoboChart project
A.3 Deleting a RoboChart package
A.4 Editing a RoboChart diagram
A.5 Deleting element from diagrams
A.6 Exporting diagrams as figures
A.7 Adapting the generated semantics

B RoboChart Syntax . . . . . . . . . . . . . . . . . . . 55
B.1 Transition labels
B.2 Types
B.3 Expressions
B.4 Actions and statements

C Assertion DSL Syntax . . . . . . . . . . . . . . . . . 61

Appendices





A. RoboChart Project Management

This appendix describes common tasks in managing RoboChart projects.

A.1 Exporting a RoboChart project

1. Right click on the project and select Export... item.



48 Chapter A. RoboChart Project Management

2. Select the wizards [General > Archive File], and click Next.

3. Select the path to the archive file, and click Finish.



A.2 Importing a RoboChart project 49

A.2 Importing a RoboChart project
1. Right click on the Model Explorer, and select Import... item.

2. Select wizards General > Existing Project into Workspace, and click Next.



50 Chapter A. RoboChart Project Management

3. Check Select archive file, and click Browse to select the archive.

4. Select the project to import, ad click Finish.



A.3 Deleting a RoboChart package 51

A.3 Deleting a RoboChart package

Since a RoboChart package is associated with an rct file and a diagram (in the aird file), we need
to delete both the rct file and the diagram1.

1. In order to delete a RoboChart package, that is, the rct file and the associated diagrams:
(a) Select the file, press Delete (or select delete on the context menu) and click OK;
(b) Click the left arrows on the file representation.aird, the subitem RoboChart and the

subitem RCPackage. The names of the diagrams associated with the deleted file will
be in a lighter font. Select them, press delete (or right-click and click Delete) and
confirm the deletion by clicking OK.

A.4 Editing a RoboChart diagram

1. Use the palette to the right to select objects to add to the diagram. For most objects (except
connection) you can either drag and drop the object to the diagram, or select and click (if you
keep Ctrl pressed, it is possible to click multiple times on the diagram to create multiple
instances of the object). After creating a new component (e.g., type), make sure to save the
diagram (press Ctrl+S or click File > Save) to guarantee the newly created element can
be used.

R The palette may not show all tools depending on the size of the screen. It is divided
into category boxes that group similar tools. In order to explore the available tools you
can click click a category box to close it, and click once more to fully expand it.
It is also possible to use the arrows at the bottom and top of the category box (or the
scroll wheel on your mouse) to scroll through the available tools.
If you are familiar with the icons, it is possible to reduce the space taken by the tools
by removing the text and showing only the icons. To do this, right click the palette and
select Layout > Icons Only

2. To use connections, select the appropriate connection tool (e.g., transition), click the source
node and then the target node2;

3. To change labels (e.g., interface names, transition labels) there are a few options:
(a) Select the item and start typing. This option will delete the original text; to avoid this

use one of the next two options; or
(b) Press F2 and the text will become editable; or
(c) Click once over the text and it will become editable.

R Label editing has some limitations that are worth mentioning:
(a) Not all labels editors are implemented yet (if you think label editing for a specific

feature is missing, create an issue in the bitbucket issue tracker);
(b) If you type a label with syntax errors, the edit will fail and the previous text will

show (potentially empty text).

4. Most textual elements (variable declarations, operations, actions etc) are input through a
pop-up window that provides a hint of the syntax and parses the input before creating the
element. For example, when creating a new action in a state:

(a) a pop-up windows will appear requesting the text of the action in the format
[(entry|exit|during) Action], that is, one of the keyword entry, exit or during
followed by an action3

1We must delete the diagram associated with the RoboChart package, not the whole aird file.
2While you can use Ctrl+Z to undo changes to the diagram, it can create inconsistencies, so use it carefully.
3See the language reference manual for the concrete syntax of actions and other elements.



52 Chapter A. RoboChart Project Management

i. if you only type entry, for instance, the box will show Cannot parse below the
text box and keep the button OK disabled

ii. if, on the other hand, you type entry skip, the tool parses the action correctly
and enables the OK button. If you click OK the action will be added to the state.

5. To save a diagram, press Ctrl+S or click File > Save.

A.5 Deleting element from diagrams

To delete an object from the diagram, select it and press delete; avoid using the option Right-click
> Edit > Delete from Model as it can make the diagram inconsistent.

Be careful when deleting elements:
1. In general, make sure they are not used elsewhere. For example, when deleting an event used

as the trigger of a transition, the transition will point to a non-existent event; make sure to
remove the reference first;

2. We have implemented controlled deletions for Interfaces and Types, but not for other ele-
ments4.

(a) When deleting an interface, the tool will delete all required and provided references
and try to replace call to the operations in the interface by other operations of the same
name in scope; if this is not possible, operation calls are converted into skip

(b) When deleting a type, the tool will look for uses of that type, if none are found, the type
is deleted. Otherwise, a list of types is offered to the user to replace the deleted type.

A.6 Exporting diagrams as figures

It is possible to export the diagrams as figure5.
To export all the diagrams at the same time:

1. Click the arrow to the left of the file representations.aird to expand it.
2. Expand the items RoboChart and Package.
3. Use ctrl+left click to select multiple diagrams
4. Right click the selection and click Export representations as images
5. A popup window will appear allowing you to select the target directory and the image format;

after selecting the directory and the format, click OK.
To export a specific diagram, follow these steps:

1. Open the diagram (if it not already open)
2. If any diagram elements are selected, deselect them by pressing Esc or clicking in the

background of the diagram
3. The toolbar at the top of the diagram contains a camera icon ; click it
4. A popup window will appear allowing you to select the target file and the image format; after

selecting the file and the format, click OK.
If you right click representation.aird, an option Export representations as images

is available. While this option works and generates images for all diagrams, it may have a side
effect of closing all open diagrams, and making the project tree inconsistent. In this case, collapse
the project by clicking the arrow to the left of the project name, and expand it again. This should
refresh the project and offer to reopen the diagrams.

4If and when I implement more cases, I’ll add them to this manual.
5The available formats are JPG, PNG, SVG, BMP and GIF.



A.7 Adapting the generated semantics 53

A.7 Adapting the generated semantics
RoboTool automatically generate the semantics of each construct of a model, provided there are
no warnings concerning that construct. Additionally, it generates a instantiations.csp file and
_assertions.csp files for each construct and rct file.

These files use a special annotation to indicate which parts of the file can be re-generated. They
have annotations of the form -- generate ID, where ID is any identifier, followed by excerpts of
CSP. The specification under the comment will be regenerated every time the model is saved. If you
do not want the specification under the comment to be re-generated, add a not after the identifier
(-- generate ID not). This will cause the generator to ignore that part of the specification.

The instantiations file provides default values for constants, functions and bounds, and the
assertions file provide default assertion checks where relevant. Use these files and the annotations
above to add your own assertions and values without losing them on re-generation.

If you delete these files, they will be regenerated but the changes will be lost.





B. RoboChart Syntax

B.1 Transition labels
The syntax of transition labels is described below.

Transition Label

Label ::= Trigger (’<{’Expression’}’)? (’[’Expression’]’)? (’/’Statement)?

The first expression after the trigger is the end deadline, the second expression is the transition
condition and the statement is the transition action. The syntax of triggers is as follows.

Trigger

Trigger ::= (Input|Output|Sync|Simple)? ClockReset*
Input ::= Event ’?’ Variable
Output ::= Event ’!’ Expression
Sync ::= Event ’.’ Expression
Simple ::= Event

The last component of a trigger consists of zero or more ClockResets (e.g., #T, where T is a clock),
which are executed when the transition is taken.

Trigger Type Meaning

Input Trigger (I) Receives any value from the event and stores it on the variable.
Output Trigger (O) Sends the value of the expression through the event.
Sync Trigger (Sync) Synchronises on the event with the value of the expression.
Simple Trigger (S) Synchronises on the event.

The table above summarises the meaning of the different types of triggers.



56 Chapter B. RoboChart Syntax

B.2 Types

RoboChart has type system similar to that of Z. The syntax of types is described below.

Type

Type ::= ’(’ Type ’)’ – parenthesised type

| N – type reference

| ’Set’ ’(’ Type ’)’ – set type

| ’Seq’ ’(’ Type ’)’ – sequence type

| Type ’*’ Type – product type

| Type ’->’ Type – function type

| Type ’<->’ Type – relation type

The table below summarises the interpretation of the type constructors.

Element Concrete Syntax Meaning

Type Reference N N is the name of a declared type.
Set Type Set(T) Type of sets of elements of T.
Sequence Type Seq(T) Type of sequences of elements of T1 to T2.
Product Type T1 * T2 Type of pairs whose first element has type T1 and

second element has type T2.
Function Type T1 -> T2 Type of functions from T1 to T2.
Relation Type T1 <-> T2 Type of relations between T1 and T2.

B.3 Expressions

The syntax of expressions is summarised below.

Expressions

Expr ::= (’0’..’9’)+ – integer

| (’0’..’9’)+.(’0’..’9’)+ – float

| ’"’[^’"’]+’"’ – string

| ’true’ | ’false’ – boolean

| N – reference

| ’<’(Expr (’,’ Expr)*)?’>’ – sequence

| ’{’(Expr (’,’ Expr)*)?’}’ – set

| ’{’ N ’:’ Type ’|’ Expr ’@’ Expr ’}’ – set comprehension

| ’[’Expr ’,’ Expr ’]’ – closed interval

| ’(’ Expr ’,’ Expr ’)’ – open interval

| N ’::’ N – enumeration constant

| ’(|’ (Expr (’,’ Expr)*)? ’|)’ – tuple

| Expr ’[’ Expr ’]’ – array access

| Expr ’(’ (Expr (’,’ Expr)*)? ’)’ – function application

| Expr ’.’ N – field access

| ... – continues on next page



B.3 Expressions 57

Expressions (cont.)

Expr ::= ...
| ’-’ Expr – negation

| Expr ’+’ Expr – sum

| Expr ’-’ Expr – subtraction

| Expr ’*’ Expr – multiplication

| Expr ’/’ Expr – division

| Expr ’%’ Expr – remainder

| Expr ’==’ Expr – equality

| Expr ’=’ Expr! – difference

| Expr ’>’ Expr – greater

| Expr ’>=’ Expr – greater or equal

| Expr ’<’ Expr – less

| Expr ’<=’ Expr – less or equal

| ’not’ Expr – not

| Expr ’/\’ Expr – and

| Expr ’\/’ Expr – or

| Expr ’=> Expr – implies

| Expr ’iff’ Expr – if and only if

| ’forall’ N ’:’ Type ’|’ Expr ’@’ Expr – universal quantification

| ’exists’ N ’:’ Type ’|’ Expr ’@’ Expr – existential quantification

| ’exists1’ N ’:’ Type ’|’ Expr ’@’ Expr – uniqueness quantification

| Expr ’^’ Expr – concatenation

| ’if’ Expr ’then’ Expr ’else’ Expr ’end’ – conditional

| ’let’ N ’==’ Expr ’@’ Expr – local definition

| ’the’ N ’:’ Type ’|’ Expr ’@’ Expr – definite description

| ’lambda’ N ’:’ Type ’|’ Expr ’@’ Expr – lambda expression

| ’since’ ’(’ N ’)’ – clock expression

| ’sinceEntry’ ’(’ N ’)’ – state clock expression

The tables below summarise and explain expressions used to construct values, arithmetic expres-
sions, comparison expressions, logic expressions, and advanced expressions.



58 Chapter B. RoboChart Syntax

Basic Expressions Concrete Syntax Comment

Integer (0..9)+
Float (0..9)+.(0..9)+
String "..." Quoted values
Boolean true | false
Reference N N is the name of a variable or constant.
Sequence <e1,e2,...> Sequence with values ei.
Set {e1,e2,...} Set with values ei.
Set Comprehension {x:T | P @ e} Set containing values e, calculated from el-

ements of type T, for which the predicate P
holds.

Interval [e1,e2] or (e3,e4) Closed interval between e1 and e2, and open
interval between e3 and e4, or a combination
of both.

Enumeration E::c Constant c of enuneration E.
Tuple (|e1,e2,...|) Tuple containing elements ei.
Array e[i] The i-th element of array e.
Function application f(e1,e2,...) Apply function f to parameters ei.
Selection e.n The n field of record e.

Arithmetic Expressions Concrete Syntax Comment

Negation -e Arithmetical negation of expression e.
Sum e1 + e2 Sum of e1 and e2.
Subtraction e1 - e2 Subtraction of e1 and e2.
Multiplication e1 * e2 Multiplication of e1 by e2.
Division e1 / e2 Division of e1 by e2.
Modulo e1 % e2 Remainder of dividing e1 by e2.

Comparison Expressions Concrete Syntax Comment

Equality e1 == e2 True if both expressions are equal.
Different e1 != e2 True if both expressions are different.
Greater than e1 > e2 True if e1 is greater than e2.
Greater than or equal to e1 >= e2 True if e1 is greater than or equal to e2.
Less than e1 < e2 True if e1 is less than e2.
Less than or equal to e1 <= e2 True if e1 is less than or equal to e2.



B.3 Expressions 59

Logical Expressions Concrete Syntax Comment

Logical not not e True if and only if e is false.
Logical and e1 /\ e2 True if and only if e1 and e2 are

true.
Logical or e1 \/ e2 True if and only if at least one of

the expressions is true.
Logical implies e1 => e2 Equivalent to not e1 \/ e2.
Logical iff e1 iff e2 Equivalent to e1=>e2 /\ e2=>e1
Universal quantification forall x: T | P @ Q True if and only if for all elements

of T, if P is true, then Q is true.
Existential quantification exists x: T | P @ Q True if and only if there is an ele-

ment of T, for which P is true and Q
is true.

Uniqueness quantification exists1 x: T | P @ Q True if and only if there is a unique
element of T, for which P and Q are
true.

Advanced Expressions Concrete Syntax Comment

Concatenation e1^e2 Concatenate sequences e1 and e2.
Conditional if c then e else f end If condition c is true, e1 else e2.
Local definition let n == e @ f Define locally n and use it to cal-

culate f.
Definite description the x: T | P @ e The value e calculated based on

the unique x for which P holds.
Lambda expression lambda x: T | P @ e The anonymous function that takes

values of type T for which P holds,
to values e calculated based on x.

Clock Expression since(C) Expression counting elapsed time
since the last reset of clock C.

State Clock Expression sinceEntry(S) Expression counting elapsed time
since entry of state S.



60 Chapter B. RoboChart Syntax

B.4 Actions and statements
The syntax of actions is described below.

Actions

Action ::= (’entry’ | ’during’ | ’exit’) Statement

The syntax of statements is as follows.

Statements

Statement ::= ’skip’
| N ’(’ (Expr (’,’ Expr)*)? ’)’ – operation call

| ’if’ Expr – conditional

’then’ Statement
’else’ Statement ’end’

| N ’=’ Expr – assignment

| N ’!’ Expr – output event

| N ’?’ N – input event

| N – simple synchronisation

| N ’.’ Expr – synchronisation

| Statement ’;’ Statement – sequential composition

| Statement ’<{ Expr ’}’ – timed statement

| ’wait’ ’(’ Expr ’)’ – wait statement

| ’wait’ ’(’ ’[’ Expr ’,’ Expr ’]’ ’)’ – nondeterministic wait

| ’#’ N – clock reset

Statement Concrete Syntax Comment

Skip skip Statement that terminates immediately.
Call o(e1,e2,...) Calls operation o with parameters ei.
Conditional if c then S1 If c is true, execute S1, otherwise execute S2.

else S2 end
Assignment x = e Assign expression e to variable x.
Output event ev!e Output value e through channel ev.
Input event ev?x Receive value through channel ev and store it

in variable x.
Synchronisation ev.e Synchronise on value e through event ev.
Synchronisation ev Synchronise on event ev.
Sequential composition S1;S2 Execute S1, and then S2.
Timed Statement S<{e} Statement S is required to terminate within e

time units.
Wait Statement wait(e) Waits for e units of time.
Nondeterministic Wait wait([a,b]) Waits nondeterminstically for d units of time

where a≤ d ≤b.
Clock Reset #C Resets clock C.



C. Assertion DSL Syntax

Assertions

Assertion ::= (’timed’ | ’untimed’)? ’assertion’ N ’:’ SPEC
(’in’ ’the’ MODEL)?
(’with’ (’constant’| ’constants’) CONSTANTS)?

Specification

SPEC ::= N ’is’ (’not’)? PRED
| N (’does’ ’not’ ’terminate’ | ’terminates’)
| N ’is’ (’not’)? ’reachable’ ’in’ N
| N REL N
| ’clock’ N ’is’ (’not’)? ’initialised’

PRED ::= ’deadlock-free’
| ’divergence-free’
| ’deterministic’
| ’timelock-free’

REL ::= ’refines’
| ’equals’
| ’does’ ’not’ ’refine’
| ’is’ ’not’ ’equal’

CSP Models

MODEL ::= ’traces’ ’model’
| ’failures’ ’model’
| ’failures’ ’divergence’ ’model’



62 Chapter C. Assertion DSL Syntax

Constant Definitions

CONSTANTS ::= (DEF (’,’ DEFs)*)?
DEF ::= N (’assigned’ | ’set’ ’to’ | ’with’ ’value’) Expr



Credits

LATEX style based on the The Legrand Orange Book Template by Mathias Legrand and Vel from
LaTeXTemplates.com. Licensed under CC BY-NC-SA 3.0
Cover photo by Bertrand Bouchez on Unsplash
Table of contents photo by Jack B on Unsplash
Header photo for chapter I by Markus Spiske on Unsplash
Header photo for remaining chapter by Frank Wang on Unsplash

Icons used in RoboTool and this report have been obtained from www.flaticon.com. Individual
credits are given below.

Icon made by Iconnice from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Sarfraz Shoukat from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Dario Ferrando from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Lyolya from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Google from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Revicon from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Icomoon from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY

www.latextemplates.com
http://creativecommons.org/licenses/by-nc-sa/3.0/
http://www.flaticon.com
http://www.flaticon.com/authors/iconnice
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.flaticon.com/authors/sarfraz-shoukat
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.flaticon.com/authors/dario-ferrando
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.flaticon.com/authors/lyolya
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.flaticon.com/authors/google
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.flaticon.com/authors/revicon
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.flaticon.com/authors/icomoon
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/


64 Chapter C. Assertion DSL Syntax

Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Freepik from www.flaticon.com is licensed by CC 3.0 BY
Icon made by Popcic from www.flaticon.com is licensed by CC 3.0 BY

http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
http://www.freepik.com
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/
https://www.flaticon.com/authors/popcic
http://www.flaticon.com
http://creativecommons.org/licenses/by/3.0/


Bibliography

[1] A. W. Roscoe. Understanding Concurrent Systems. Texts in Computer Science. Springer,
2011.

[2] C. Dixon et al. “Towards temporal verification of swarm robotic systems”. In: Robot. Auton.
Syst. 60.11 (2012), pages 1429–1441 (cited on page 33).

[3] Ana Cavalcanti et al. “Verified simulation for robotics”. English. In: Science of Computer
Programming (Jan. 2019). ISSN: 0167-6423. DOI: 10.1016/j.scico.2019.01.004.

[4] J. Chen, M. Gauci, and R. Groß. “A strategy for transporting tall objects with a swarm of minia-
ture mobile robots”. In: 2013 IEEE International Conference on Robotics and Automation.
May 2013, pages 863–869. DOI: 10.1109/ICRA.2013.6630674 (cited on page 34).

[5] Alvaro Miyazawa et al. “RoboChart: modelling and verification of the functional behaviour
of robotic applications”. In: Software & Systems Modeling (Jan. 2019). ISSN: 1619-1374. DOI:
10.1007/s10270-018-00710-z.

[6] S. Schneider. Concurrent and Real-time Systems: The CSP approach. Wiley, 2000.

[7] T. Gibson-Robinson et al. “FDR3: A Modern Refinement Checker for CSP”. In: Tools and
Algorithms for the Construction and Analysis of Systems. 2014, pages 187–201 (cited on
page 35).

https://doi.org/10.1016/j.scico.2019.01.004
https://doi.org/10.1109/ICRA.2013.6630674
https://doi.org/10.1007/s10270-018-00710-z

	Part I — Tutorial
	1 RoboTool Instalation
	1.1 Requirements
	1.2 Download and Update Site
	1.3 Installation
	1.4 Creating a new RoboChart Project
	1.5 Creating a new RoboChart diagram
	1.6 Exercises

	2 RoboChart Modelling
	2.1 Creating Interfaces
	2.2 Creating Robotic Platforms
	2.3 Creating Controllers
	2.4 Creating State Machines
	2.5 Creating Modules
	2.6 Exercises

	3 Analysing RoboChart Models
	3.1 Checking core assertions
	3.2 Using RoboTool's Assertion DSL
	3.3 Exercises


	Part II — Appendices
	A RoboChart Project Management
	A.1 Exporting a RoboChart project
	A.2 Importing a RoboChart project
	A.3 Deleting a RoboChart package
	A.4 Editing a RoboChart diagram
	A.5 Deleting element from diagrams
	A.6 Exporting diagrams as figures
	A.7 Adapting the generated semantics

	B RoboChart Syntax
	B.1 Transition labels
	B.2 Types
	B.3 Expressions
	B.4 Actions and statements

	C Assertion DSL Syntax
	Credits
	Bibliography


